Skip to main content
Log in

Effects of miR-200c on the migration and invasion abilities of human prostate cancer Du145 cells and the corresponding mechanism

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

microRNAs (miRNAs) have played a key role in human tumorigenesis, tumor progression, and metastasis. On the one hand, miRNAs are aberrantly expressed in many types of human cancer; on the other hand, miRNAs can function as tumor suppressors or oncogenes that target many cancer-related genes. This study aimed to investigate the effects of miRNA-200c (miR-200c) on the biological behavior and mechanism of proliferation, migration, and invasion in the prostate cancer cell line Du145. In this study, Du145 cells were transfected with miR-200c mimics or negative control miR-NC by using an X-tremeGENE siRNA transfection reagent. The relative expression of miR-200c was measured by RT-PCR. The proliferation, migration, and invasion abilities of Du145 cells were detected by CCK8 assays, migration assays and invasion assays, respectively. The expressions of ZEB1, E-cadherin, and vimentin were observed by western blot. Results showed that DU145 cells exhibited a high expression of miR-200c compared with immortalized normal prostate epithelial cell RWPE-1. Du145 cells were then transfected with miR-200c mimics and displayed lower abilities of proliferation, migration, and invasion than those transfected with the negative control. The protein levels of ZEB1 and vimentin were expressed at a low extent in Du145 cells, which were transfected with miR-200c mimics; by contrast, E-cadherin was highly expressed. Hence, miR-200c could significantly inhibit the proliferation of the prostate cancer cell line Du145; likewise, miR-200c could inhibit migration and invasion by epithelial-mesenchymal transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu X, Gerstein M, Snyder M. Getting connected: analysis and principles of biological networks. Genes Dev 2007; 21(9): 1010–1024

    Article  CAS  PubMed  Google Scholar 

  2. Ruvkun G. Molecular biology. Glimpses of a tiny RNA world. Science 2001; 294(5543): 797–799

    Article  CAS  PubMed  Google Scholar 

  3. Ambs S, Prueitt RL, Yi M, Hudson RS, Howe TM, Petrocca F, Wallace TA, Liu CG, Volinia S, Calin GA, Yfantis HG, Stephens RM, Croce CM. Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res 2008; 68(15): 6162–6170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Dalmay T, Edwards DR. MicroRNAs and the hallmarks of cancer. Oncogene 2006; 25(46): 6170–6175

    Article  CAS  PubMed  Google Scholar 

  5. Brabletz S, Brabletz T. The ZEB/miR-200 feedback loop—a motor of cellular plasticity in development and cancer? EMBO Rep 2010; 11(9): 670–677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Cochrane DR, Spoelstra NS, Howe EN, Nordeen SK, Richer JK. MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents. Mol Cancer Ther 2009; 8(5): 1055–1066

    Article  CAS  PubMed  Google Scholar 

  7. Cochrane DR, Howe EN, Spoelstra NS, Richer JK. Loss of miR-200c: a marker of aggressiveness and chemoresistance in female reproductive cancers. J Oncol 2010; 2010: 821717

    Article  PubMed Central  PubMed  Google Scholar 

  8. Cittelly DM, Dimitrova I, Howe EN, Cochrane DR, Jean A, Spoelstra NS, Post MD, Lu X, Broaddus RR, Spillman MA, Richer JK. Restoration of miR-200c to ovarian cancer reduces tumor burden and increases sensitivity to paclitaxel. Mol Cancer Ther 2012; 11(12): 2556–2565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002; 2(6): 442–454

    Article  CAS  PubMed  Google Scholar 

  10. Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 2008; 14(6): 818–829

    Article  CAS  PubMed  Google Scholar 

  11. Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 2009; 119(6): 1438–1449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119(6): 1420–1428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 2009; 9(4): 265–273

    Article  CAS  PubMed  Google Scholar 

  14. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelialmesenchymal transitions in development and disease. Cell 2009; 139(5): 871–890

    Article  CAS  PubMed  Google Scholar 

  15. Chen Y, Sun Y, Chen L, Xu X, Zhang X, Wang B, Min L, Liu W. miRNA-200c increases the sensitivity of breast cancer cells to doxorubicin through the suppression of E-cadherin-mediated PTEN/Akt signaling. Mol Med Rep 2013; 7(5): 1579–1584

    CAS  PubMed  Google Scholar 

  16. Hurteau GJ, Carlson JA, Spivack SD, Brock GJ. Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res 2007; 67(17): 7972–7976

    Article  CAS  PubMed  Google Scholar 

  17. Wang J, Ruan K. miR-200c affects the mRNA expression of Ecadherin by regulating the mRNA level of TCF8 during post-natal epididymal development in juvenile rats. Acta Biochim Biophys Sin (Shanghai) 2010; 42(9): 628–634

    Article  CAS  Google Scholar 

  18. Chen ML, Liang LS, Wang XK. miR-200c inhibits invasion and migration in human colon cancer cells SW480/620 by targeting ZEB1. Clin Exp Metastasis 2012; 29(5): 457–469

    Article  CAS  PubMed  Google Scholar 

  19. Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 2008; 9(6): 582–589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Zhang H, Li Y, Lai M. The microRNA network and tumor metastasis. Oncogene 2010; 29(7): 937–948

    Article  CAS  PubMed  Google Scholar 

  21. Ocaña OH, Nieto MA. A new regulatory loop in cancer-cell invasion. EMBO Rep 2008; 9(6): 521–522

    Article  PubMed Central  PubMed  Google Scholar 

  22. Lin J, Liu C, Gao F, Mitchel RE, Zhao L, Yang Y, Lei J, Cai J. miR-200c enhances radiosensitivity of human breast cancer cells. J Cell Biochem 2013; 114(3): 606–615

    Article  CAS  PubMed  Google Scholar 

  23. Voorhoeve PM. MicroRNAs: Oncogenes, tumor suppressors or master regμlators of cancer heterogeneity? Biochimica et biophysica acta 2010; 1805: 72–86

    CAS  PubMed  Google Scholar 

  24. Chuang TD, Panda H, Luo X, Chegini N. miR-200c is aberrantly expressed in leiomyomas in an ethnic-dependent manner and targets ZEBs, VEGFA, TIMP2, and FBLN5. Endocr Relat Cancer 2012; 19(4): 541–556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Park YA, Lee JW, Choi JJ, Jeon HK, Cho Y, Choi C, Kim TJ, Lee NW, Kim BG, Bae DS. The interactions between MicroRNA-200c and BRD7 in endometrial carcinoma. Gynecol Oncol 2012; 124(1): 125–133

    Article  CAS  PubMed  Google Scholar 

  26. Hamano R, Miyata H, Yamasaki M, Kurokawa Y, Hara J, Moon JH, Nakajima K, Takiguchi S, Fujiwara Y, Mori M, Doki Y. Overexpression of miR-200c induces chemoresistance in esophageal cancers mediated through activation of the Akt signaling pathway. Clin Cancer Res 2011; 17: 3029–3038

    Article  CAS  PubMed  Google Scholar 

  27. Adam L, Zhong M, Choi W, Qi W, Nicoloso M, Arora A, Calin G, Wang H, Siefker-Radtke A, McConkey D, Bar-Eli M, Dinney C. miR-200 expression regμlates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clin Cancer Res 2009; 15: 5060–5072

    Article  CAS  PubMed  Google Scholar 

  28. Jurmeister S, Baumann M, Balwierz A, Keklikoglou I, Ward A, Uhlmann S, Zhang JD, Wiemann S, Sahin O. MicroRNA-200c represses migration and invasion of breast cancer cells by targeting actin-regμlatory proteins FHOD1 and PPM1F. Mol Cell Biol 2012; 32: 633–651

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Banyard J, Chung I, Wilson AM, Vetter G, Le Béchec A, Bielenberg DR, Zetter BR. Regulation of epithelial plasticity by miR-424 and miR-200 in a new prostate cancer metastasis model. Sci Rep 2013; 3: 3151

    Article  PubMed Central  PubMed  Google Scholar 

  30. Kim J, Wu L, Zhao JC, Jin HJ, Yu J. TMPRSS2-ERG gene fusions induce prostate tumorigenesis by modulating microRNA miR-200c. Oncogene 2013 Nov 4. [Epub ahead of print] doi: 10.1038/onc.2013.46

    Google Scholar 

  31. Hurteau GJ, Carlson JA, Spivack SD, Brock GJ. Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res 2007; 67(17): 7972–7976

    Article  CAS  PubMed  Google Scholar 

  32. Kong D, Li Y, Wang Z, Banerjee S, Ahmad A, Kim HR, Sarkar FH. miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells 2009; 27(8): 1712–1721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Murray D, Precht P, Balakir R, Horton WE Jr. The transcription factor deltaEF1 is inversely expressed with type II collagen mRNA and can repress Col2a1 promoter activity in transfected chondrocytes. J Biol Chem 2000; 275(5): 3610–3618

    Article  CAS  PubMed  Google Scholar 

  34. Song Y, Zhang Y, Wu H, Kong M, Chen X, Shao C. The relationships between zeb1 and the migration ability of tumor cells. World Chin J Digestology (Shi Jie Hua Ren Xiao Hua Za Zhi) 2010; 18(11): 1099–1103 (in chinese)

    CAS  Google Scholar 

  35. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10(5): 593–601

    Article  CAS  PubMed  Google Scholar 

  36. Hurteau GJ, Carlson JA, Roos E, Brock GJ. Stable expression of miR-200c alone is sufficient to regulate TCF8 (ZEB1) and restore Ecadherin expression. Cell Cycle 2009; 8(13): 2064–2069

    Article  CAS  PubMed  Google Scholar 

  37. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S, Wiggins JF, Bader AG, Fagin R, Brown D, Tang DG. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 2011; 17(2): 211–215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, R., Xiao, H., Yang, T. et al. Effects of miR-200c on the migration and invasion abilities of human prostate cancer Du145 cells and the corresponding mechanism. Front. Med. 8, 456–463 (2014). https://doi.org/10.1007/s11684-014-0353-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-014-0353-z

Keywords

Navigation