Skip to main content

Advertisement

Log in

Differential age-related gray and white matter impact mediates educational influence on elders’ cognition

  • SI: Resilience/Reserve in AD
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

High education, as a proxy of cognitive reserve (CR), has been associated with cognitive advantage amongst old adults and may operate through neuroprotective and/or compensation mechanisms. In neuromaging studies, indirect evidences of neuroprotection can be inferred from positive relationships between CR and brain integrity measures. In contrast, compensation allows high CR elders to sustain greater brain damage. We included 100 cognitively normal old-adults and investigated the associations and interactions between education, speed of processing (SP), memory and two brain integrity measures: cortical thickness (CTh) of gray matter (GM) and fractional anisotropy (FA) in the white matter (WM). High education was associated with better cognitive performance, enlarged CTh in frontal lobe areas and reduced measures of FA in several areas. Better SP performance in higher educated subjects was related to more preserved GM and WM, while memory status amongst high educated elders was better explained by a putative compensatory mechanism and independently from cerebrovascular risk indicators. Moreover, we analyzed the direct effect of age on measures of brain integrity and found a stronger negative effect on WM than in CTh, which was accentuated amongst the high CR sample. Our study suggests that the cognitive advantage associated to high education among healthy aging is related to the coexistence of both neuroprotective and compensatory mechanisms. In particular, high educated elders seem to have greater capacity to counteract a more abrupt age impact on WM integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida, R. P., Schultz, S. A., Austin, B. P., Boots, E. A., Dowling, N. M., Gleason, C. E., et al. (2015). Effect of cognitive reserve on age-related changes in cerebrospinal fluid biomarkers of Alzheimer disease. JAMA Neurology, 53792(6), 699–706. doi:10.1001/jamaneurol.2015.0098.

    Article  Google Scholar 

  • Arenaza-Urquijo, E. M., Bosch, B., Sala-Llonch, R., Solé-Padullés, C., Junqué, C., Fernández-Espejo, D., et al. (2011). Specific anatomic associations between white matter integrity and cognitive reserve in normal and cognitively impaired elders. American Association for Geriatric Psychiatry, 19(1), 33–42. doi:10.1097/JGP.0b013e3181e448e1.

    Article  Google Scholar 

  • Arenaza-Urquijo, E. M., Landeau, B., La Joie, R., Mevel, K., Mézenge, F., Perrotin, A., & Chételat, G. (2013a). Relationships between years of education and gray matter volume, metabolism and functional connectivity in healthy elders. NeuroImage, 83, 450–457. doi:10.1016/j.neuroimage.2013.06.053.

    Article  PubMed  Google Scholar 

  • Arenaza-Urquijo, E. M., Molinuevo, J. L., Sala-Llonch, R., Solé-Padullés, C., Balasa, M., Bosch, B., Olives, J., et al. (2013b). Cognitive reserve proxies relate to gray matter loss in cognitively healthy elderly with abnormal cerebrospial fluid amyloid-β levels. Journal of Alzheimers Disease, 35(4), 715–726.

    Google Scholar 

  • Arenaza-Urquijo, E. M., Wirth, M., & Chételat, G. (2015). Cognitive reserve and lifestyle: moving towards preclinical Alzheimer’s disease. Frontiers in Aging Neuroscience, 7, 134. doi:10.3389/fnagi.2015.00134.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker, L. M., Laidlaw, D. H., Cabeen, R., Akbudak, E., Conturo, T. E., Correia, S., et al. (2016). Cognitive reserve moderates the relationship between neuropsychological performance and white matter fiber bundle length in healthy older adults. Brain Imaging and Behavior. doi:10.1007/s11682-016-9540-7.

    PubMed Central  Google Scholar 

  • Barnes, D. E., & Yaffe, K. (2011). The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurology, 10(9), 819–828. doi:10.1016/S1474-4422(11)70072-2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartrés-Faz, D., & Arenaza-Urquijo, E. M. (2011). Structural and functional imaging correlates of cognitive and brain reserve hypotheses in healthy and pathological aging. Brain Topography, 24(3–4), 340–357. doi:10.1007/s10548-011-0195-9.

    Article  PubMed  Google Scholar 

  • Bartrés-Faz, D., Solé-Padullés, C., Junqué, C., Rami, L., Bosch, B., Bargalló, N., et al. (2009). Interactions of cognitive reserve with regional brain anatomy and brain function during a working memory task in healthy elders. Biological Psychology, 80, 256–259. doi:10.1016/j.biopsycho.2008.10.005.

    Article  PubMed  Google Scholar 

  • Barulli, D., & Stern, Y. (2013). Efficiency, capacity, compensation, maintenance, plasticity: emerging concepts in cognitive reserve. Trends in Cognitive Sciences, 17(10), 502–509. doi:10.1016/j.tics.2013.08.012.

    Article  PubMed  Google Scholar 

  • Bender, A. R., Prindle, J. J., Brandmaier, A. M., & Raz, N. (2015). White matter and memory in healthy adults: coupled changes over two years. NeuroImage, 1(131), 193–204. doi:10.1016/j.neuroimage.2015.10.085.

    Google Scholar 

  • Bennett, I. J., & Madden, D. J. (2014). Disconnected aging: cerebral white matter integrity and age-related differences in cognition. Neuroscience, 276, 187–205. doi:10.1016/j.neuroscience.2013.11.026.

    Article  CAS  PubMed  Google Scholar 

  • Bennett, I., Madden, D., & Vaidya, C. (2010). Age-related differences in multiple measures of white matter integrity: a diffusion tensor imaging study of healthy aging. Human Brain, 31(3), 378–390. doi:10.1002/hbm.20872.Age-Related.

    Google Scholar 

  • Bosch, B., Bartrés-Faz, D., Rami, L., Arenaza-Urquijo, EM., Fernández-Espejo, D., Junqué, C., et al. (2010). Cognitive reserve modulates task-induced activations and deactivations in healthy elders, amnestic mild cognitive impairment and mild Alzheimer's disease. Cortex, 46(4), 451–61. doi:10.1016/j.cortex.2009.05.006.

  • Brooks-Wilson, A. R. (2013). Genetics of healthy aging and longevity. Human Genetics, 132(12), 1323–1338. doi:10.1007/s00439-013-1342-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao, L. L., DeCarli, C., Kriger, S., Truran, D., Zhang, Y., Laxamana, J., et al. (2013). Associations between white matter Hyperintensities and β amyloid on integrity of projection, association, and limbic fiber tracts measured with diffusion tensor MRI. PloS One, 8(6). doi:10.1371/journal.pone.0065175.

  • Chételat, G., Villemagne, V. L., Pike, K. E., Baron, J. C., Bourgeat, P., Jones, G., et al. (2010). Larger temporal volume in elderly with high versus low beta-amyloid deposition. Brain, 133(11), 3349–3358. doi:10.1093/brain/awq187.

    Article  PubMed  Google Scholar 

  • Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage, 9(2), 179–194. doi:10.1006/nimg.1998.0395.

    Article  CAS  PubMed  Google Scholar 

  • Dufouil, C., Alpérovitch, A., & Tzourio, C. (2003). Influence of education on the relationship between white matter lesions and cognition. Neurology, 60(5), 831–836. doi:10.1212/01.WNL.0000049456.33231.96.

    Article  CAS  PubMed  Google Scholar 

  • Ewers, M., Insel, P. S., & Stern, Y. (2013). Cognitive reserve associated with FDG-PET in preclinical Alzheimer disease. Neurology, 80(13), 1194–1201. doi:10.1212/WNL.0b013e31828970c2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira, D., Bartrés-Faz, D., Nygren, L., Rundkvist, L. J., Molina, Y., Machado, A., Junqué, C., Barroso, J., & Westman, E. (2016). Different reserve proxies confer overlapping and unique endurance to cortical thinning in healthy middle-aged adults. Behavioural Brain Research, 311, 375–383. doi:10.1016/j.bbr.2016.05.061.

    Article  PubMed  Google Scholar 

  • Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 11050–11055. doi:10.1073/pnas.200033797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M., & Walhovd, K. B. (2013). Brain changes in older adults at very low risk for Alzheimer’s disease. The Journal of Neuroscience, 33(19), 8237–8242. doi:10.1523/JNEUROSCI.5506-12.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M., & Walhovd, K. B. (2014a). What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Progress in Neurobiology, 117, 20–40. doi:10.1016/j.pneurobio.2014.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fjell, A. M., Westlye, L. T., Grydeland, H., Amlien, I., Espeseth, T., Reinvang, I., et al. (2014b). Accelerating cortical thinning: unique to dementia or universal in aging? Cerebral Cortex, 24(4), 919–934. doi:10.1093/cercor/bhs379.

    Article  PubMed  Google Scholar 

  • Foubert-Samier, A., Catheline, G., Amieva, H., Dilharreguy, B., Helmer, C., Allard, M., & Dartigues, J.-F. (2012). Education, occupation, leisure activities, and brain reserve: a population-based study. Neurobiology of Aging, 33(2), 423.e15–423.e25. doi:10.1016/j.neurobiolaging.2010.09.023.

    Article  Google Scholar 

  • Gazes, Y., Bowman, F. D., Razlighi, Q. R., O’Shea, D., Stern, Y., & Habeck, C. (2016). White matter tract covariance patterns predict age-declining cognitive abilities. NeuroImage, 125, 53–60. doi:10.1016/j.neuroimage.2015.10.016.

    Article  PubMed  Google Scholar 

  • Giorgio, A., Santelli, L., Tomassini, V., Bosnell, R., Smith, S., De Stefano, N., & Johansen-Berg, H. (2010). Age-related changes in grey and white matter structure throughout adulthood. NeuroImage, 51(3), 943–951. doi:10.1016/j.neuroimage.2010.03.004.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grau, M., Elosua, R., Cabrera De León, A., Guembe, M. J., Baena-Díez, J. M., Vega Alonso, T., et al. (2011). Factores de riesgo cardiovascular en España en la primera década del siglo XXI: análisis agrupado con datos individuales de 11 estudios de base poblacional, estudio DARIOS. Revista Española de Cardiología, 64(4), 295–304. doi:10.1016/j.recesp.2010.11.005.

    Article  PubMed  Google Scholar 

  • Hayes, A. F. (2009). Beyond baron and Kenny: statistical mediation analysis in the new millennium. Communication Monographs, 76(4), 408–420. doi:10.1080/03637750903310360.

    Article  Google Scholar 

  • Hogstrom, L. J., Westlye, L. T., Walhovd, K. B., & Fjell, A. M. (2013). The structure of the cerebral cortex across adult life: age-related patterns of surface area, thickness, and gyrification. Cerebral Cortex, 23(11), 2521–2530. doi:10.1093/cercor/bhs231.

    Article  PubMed  Google Scholar 

  • Jbabdi, S., Sotiropoulos, S. N., Savio, A. M., Graña, M., & Behrens, T. E. J. (2012). Model-based analysis of multishell diffusion MR data for tractography: how to get over fitting problems. Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine, 68(6), 1846–1855. doi:10.1002/mrm.24204.

    Article  Google Scholar 

  • Johansen-Berg, H., Baptista, C. S., & Thomas, A. G. (2012). Human structural plasticity at record speed. Neuron, 73(6), 1058–1060. doi:10.1016/j.neuron.2012.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kemppainen, N. M., Aalto, S., Karrasch, M., Någren, K., Savisto, N., Oikonen, V., et al. (2008). Cognitive reserve hypothesis: Pittsburgh compound B and fluorodeoxyglucose positron emission tomography in relation to education in mild Alzheimer’s disease. Annals of Neurology, 63(1), 112–118. doi:10.1002/ana.21212.

    Article  PubMed  Google Scholar 

  • Kerchner, G. A., Racine, C. A., Hale, S., Wilheim, R., Laluz, V., Miller, B. L., & Kramer, J. H. (2012). Cognitive processing speed in older adults: relationship with white matter integrity. PLoS ONE, 7(11). doi:10.1371/journal.pone.0050425.

  • Kim, J. P., Seo, S. W., Shin, H. Y., Ye, B. S., Yang, J.-J., Kim, C., et al. (2015). Effects of education on aging-related cortical thinning among cognitively normal individuals. Neurology, 85(9), 806–812. doi:10.1212/WNL.0000000000001884.

    Article  PubMed  Google Scholar 

  • Landau, S. M., Marks, S. M., Mormino, E. C., Rabinovici, G. D., Oh, H., O’Neil, J. P., Wilson, R. S., & Jagust, W. J. (2012). Association of lifetime cognitive engagementa dn low β-amyloid deposition. Archives of Neurology, 69(5), 623–629.

    Article  PubMed  PubMed Central  Google Scholar 

  • Laukka, E. J., Lövdén, M., Kalpouzos, G., Li, T.-Q., Jonsson, T., Wahlund, L.-O., et al. (2013). Associations between white matter microstructure and cognitive performance in old and very old age. PloS One, 8(11), e81419. doi:10.1371/journal.pone.0081419.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Julkunen, V., Paajanen, T., Westman, E., Wahlund, L. O., Aitken, A., et al. (2012). Education increases reserve against Alzheimer’s disease-evidence from structural MRI analysis. Neuroradiology, 54(9), 929–938. doi:10.1007/s00234-012-1005-0.

    Article  PubMed  PubMed Central  Google Scholar 

  • MacKinnon, D. P., Fairchild, A. J., & Fritz, M. S. (2007). Mediation analysis. Annual Review of Psychology, 58, 593–614. doi:10.1146/annurev.psych.58.110405.085542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Madden, D. J., Whiting, W. L., Huettel, S. A., White, L. E., MacFall, J. R., & Provenzale, J. M. (2004). Diffusion tensor imaging of adult age differences in cerebral white matter: relation to response time. NeuroImage, 21(3), 1174–1181. doi:10.1016/j.neuroimage.2003.11.004.

    Article  PubMed  Google Scholar 

  • Marrugat, J., D’Agostino, R., Sullivan, L., Elosua, R., Wilson, P., Ordovas, J., et al. (2003). An adaptation of the Framingham coronary heart disease risk function to European Mediterranean areas. Journal of Epidemiology and Community Health, 57(8), 634–638. doi:10.1136/jech.57.8.634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nebes, R., Meltzer, C., Whyte, E., Scanlon, J., Halligan, E., Saxton, J., et al. (2006). The relation of white matter hyperintensities to cognitive performance in the normal old: education matters. Aging, Neuropsychology, and Cognition, 13(3–4), 326–340. doi:10.1080/138255890969294.

    Article  Google Scholar 

  • Nyberg, L., Maitland, S. B., Rönnlund, M., Bäckman, L., Dixon, R. A., Wahlin, A., & Nilsson, L.-G. (2003). Selective adult age differences in an age-invariant multifactor model of declarative memory. Psychology and Aging, 18(1), 149–160. doi:10.1037/0882-7974.18.1.149.

    Article  PubMed  Google Scholar 

  • Nyberg, L., Lövdén, M., Riklund, K., Lindenberger, U., & Bäckman, L. (2012). Memory aging and brain maintenance. Trends in Cognitive Sciences, 16(5), 292–305. doi:10.1016/j.tics.2012.04.005.

    Article  PubMed  Google Scholar 

  • Okonkwo, O. C., Schultz, S. A., Oh, J. M., Larson, J., Edwards, D., Cook, D., et al. (2014). Physical activity attenuates age-related biomarker alterations in preclinical AD. Neurology, 83(19), 1753–1760. doi:10.1212/WNL.0000000000000964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opdebeeck, C., Martyr, A., & Clare, L. (2016). Cognitive reserve and cognitive function in healthy older people: a meta-analysis. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 23(1), 40–60. doi:10.1080/13825585.2015.1041450.

  • Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173–196. doi:10.1146/annurev.psych.59.103006.093656.

    Article  PubMed  PubMed Central  Google Scholar 

  • Perneczky, R., Drzezga, A., Diehl-Schmid, J., Schmid, G., Wohlschläger, A., Kars, S., et al. (2006). Schooling mediates brain reserve in Alzheimer’s disease: findings of fluoro-deoxy-glucose-positron emission tomography. Journal of Neurology, Neurosurgery, and Psychiatry, 77(9), 1060–1063. doi:10.1136/jnnp.2006.094714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persson, N., Ghisletta, P., Dahle, C. L., Bender, A. R., Yang, Y., Yuan, P., et al. (2016). Regional brain shrinkage and change in cognitive performance over two years: the bidirectional influences of the brain and cognitive reserve factors. NeuroImage, 126, 15–26. doi:10.1016/j.neuroimage.2015.11.028.

    Article  PubMed  Google Scholar 

  • Petersen, R. C., & Morris, J. C. (2005). Mild cognitive impairment as a clinical entity and treatment target. Archives of Neurology, 62(7), 1160–1163 discussion 1167. doi:10.1001/archneur.62.7.1160.

    Article  PubMed  Google Scholar 

  • Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879–891.

    Article  PubMed  Google Scholar 

  • Rönnlund, M., Nyberg, L., Bäckman, L., & Nilsson, L. G. (2005). Stability, growth, and decline in adult life span development of declarative memory: cross-sectional and longitudinal data from a population-based study. Psychology and Aging, 20(1), 3–18. doi:10.1037/0882-7974.20.1.3.

    Article  PubMed  Google Scholar 

  • Sala, S., Agosta, F., Pagani, E., Copetti, M., Comi, G., & Filippi, M. (2012). Microstructural changes and atrophy in brain white matter tracts with aging. Neurobiology of Aging, 33(3), 488–498. doi:10.1016/j.neurobiolaging.2010.04.027.

    Article  PubMed  Google Scholar 

  • Salat, D. H. (2011). The declining infrastructure of the aging brain. Brain Connectivity, 1(4), 279–293. doi:10.1089/brain.2011.0056.

    Article  PubMed  PubMed Central  Google Scholar 

  • Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 403–428. doi:10.1037/0033-295X.103.3.403.

    Article  CAS  PubMed  Google Scholar 

  • Salthouse, T. A. (2000). Aging and measures of processing speed. Biological Psychology, 54(1–3), 35–54.

    Article  CAS  PubMed  Google Scholar 

  • Salthouse, T. A. (2011). Neuroanatomical substrates of age-related cognitive decline. Psychological Bulletin, 137(5), 753–784. doi:10.1037/a0023262.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sasson, E., Doniger, G. M., Pasternak, O., Tarrasch, R., & Assaf, Y. (2013). White matter correlates of cognitive domains in normal aging with diffusion tensor imaging. Frontiers in Neuroscience, 7(March), 1–13. doi:10.3389/fnins.2013.00032.

    Google Scholar 

  • Schmidt, P., Gaser, C., Arsic, M., Buck, D., Förschler, A., Berthele, A., et al. (2012). An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. NeuroImage, 59(4), 3774–3783. doi:10.1016/j.neuroimage.2011.11.032.

    Article  PubMed  Google Scholar 

  • Ségonne, F., Pacheco, J., & Fischl, B. (2007). Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Transactions on Medical Imaging, 26(4), 518–529. doi:10.1109/TMI.2006.887364.

    Article  PubMed  Google Scholar 

  • Sexton, C. E., Walhovd, K., Storsve, A. B., Tamnes, C. K., Westlye, L. T., Johansen-Berg, H., & Fjell, A. M. (2014). Accelerated changes in white matter microstructure during ageing: a longitudinal diffusion tensor imaging study. Journal of Neuroscience, 34(46), 15425–15436. doi:10.1523/JNEUROSCI.0203-14.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17(1), 87–97. doi:10.1109/42.668698.

    Article  CAS  PubMed  Google Scholar 

  • Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155. doi:10.1002/hbm.10062.

    Article  PubMed  Google Scholar 

  • Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., et al. (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage, 31(4), 1487–1505. doi:10.1016/j.neuroimage.2006.02.024.

    Article  PubMed  Google Scholar 

  • Solé-Padullés, C., Bartrés-Faz, D., Junqué, C., Vendrell, P., Rami, L., Clemente, I. C., et al. (2009). Brain structure and function related to cognitive reserve variables in normal aging, mild cognitive impairment and Alzheimer’s disease. Neurobiology of Aging, 30(7), 1114–1124. doi:10.1016/j.neurobiolaging.2007.10.008.

    Article  PubMed  Google Scholar 

  • Staff, R. T., Murray, A. D., Ahearn, T. S., Mustafa, N., Fox, H. C., & Whalley, L. J. (2012). Childhood socioeconomic status and adult brain size: childhood socioeconomic status influences adult hippocampal size. Annals of Neurology, 71(5), 653–660. doi:10.1002/ana.22631.

    Article  PubMed  Google Scholar 

  • Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society: JINS, 8(3), 448–460.

    Article  PubMed  Google Scholar 

  • Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 2015–2028. doi:10.1016/j.neuropsychologia.2009.03.004.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurology, 11(11), 1006–1012. doi:10.1016/S1474-4422(12)70191-6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Storsve, A. B., Fjell, A. M., Tamnes, C. K., Westlye, L. T., Overbye, K., Aasland, H. W., & Walhovd, K. B. (2014). Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: regions of accelerating and decelerating change. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34(25), 8488–8498. doi:10.1523/JNEUROSCI.0391-14.2014.

    Article  CAS  Google Scholar 

  • Suo, C., León, I., Brodaty, H., Trollor, J., Wen, W., Sachdev, P., et al. (2012). Supervisory experience at work is linked to low rate of hippocampal atrophy in late life. NeuroImage, 63, 1542–1551.

    Article  PubMed  Google Scholar 

  • Then, F. S., Luck, T., Angermeyer, M. C., & Riedel-Heller, S. G. (2016). Education as protector against dementia, but what exactly do we mean by education? Age and Ageing . doi:10.1093/ageing/afw049.afw049

    PubMed  Google Scholar 

  • Valenzuela, M. J., & Sachdev, P. (2006). Brain reserve and dementia: a systematic review. Psychological Medicine, 36(4), 441–454. doi:10.1017/S0033291705006264.

    Article  PubMed  Google Scholar 

  • Valenzuela, M. J., Sachdev, P., Wen, W., Chen, X., & Brodaty, H. (2008). Lifespan mental activity predicts diminished rate of hippocampal atrophy. PLoS ONE, 3(7), 1–6. doi:10.1371/journal.pone.0002598.

    Article  Google Scholar 

  • Vemuri, P., Przybelski, S. A., Knopman, D. S., Machulda, M., Lowe, V. J., Mielke, M. M., et al. (2016). Effect of intellectual enrichment on AD biomarker trajectories. Neurology, 86, 1128–1135. doi:10.1212/WNL.0000000000002490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidal-Piñeiro, D., Valls-Pedret, C., Fernández-Cabello, S., Arenaza-Urquijo, E. M., Sala-Llonch, R., Solana, E., et al. (2014). Decreased default mode network connectivity correlates with age-associated structural and cognitive changes. Frontiers in Aging Neuroscience, 6, 1–17. doi:10.3389/fnagi.2014.00256.

    Google Scholar 

  • Westlye, L. T., Walhovd, K. B., Dale, A. M., Bjørnerud, A., Due-Tønnessen, P., Engvig, A., et al. (2010). Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry. Cerebral Cortex, 20(9), 2055–2068. doi:10.1093/cercor/bhp280.

    Article  PubMed  Google Scholar 

  • Wirth, M., Hasse, C. M., Villeneuve, S., Vogel, J., & Jagust, W. J. (2014). Neuroprotective pathways: lifestyle activity, brain pathology, and cognition in cognitively normal older adults. Neurobiology of Aging, 35(8), 1873–1882. doi:10.1016/j.neurobiolaging.2014.02.015.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Bartrés-Faz.

Ethics declarations

Funding

Partially funded by Spanish Ministry of Economy and Competitiveness (MINECO) grant to D-BF (PSI2015-64227-R) and the Walnuts and Healthy Aging (WAHA) study (http://www.clinicaltrials.gov NCT01634841) funded by the California Walnut Commission, Sacramento, California, USA. CIBEROBN is an initiative of ISCIII, Spain.

Conflict of interest

Lídia Vaqué-Alcázar declares that she has no conflict of interest. Roser Sala-Llonch declares that she has no conflict of interest. Cinta Valls declares that she has no conflict of interest. Dídac Vidal-Piñeiro declares that he has no conflict of interest. Sara Fernández-Cabello declares that she has no conflict of interest. Núria Bargalló declares that she has no conflict of interest. Emilio Ros declares that he has no conflict of interest. David Bartrés-Faz declares that he has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaqué-Alcázar, L., Sala-Llonch, R., Valls-Pedret, C. et al. Differential age-related gray and white matter impact mediates educational influence on elders’ cognition. Brain Imaging and Behavior 11, 318–332 (2017). https://doi.org/10.1007/s11682-016-9584-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-016-9584-8

Keywords

Navigation