Skip to main content
Log in

The effects of DAT1 genotype on fMRI activation in an emotional go/no-go task

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Dopaminergic brain circuits participate in emotional processing and impulsivity. The dopamine transporter (DAT) modulates dopamine reuptake. A variable number tandem repeat (VNTR) in the dopamine transporter gene (DAT1) affects DAT expression. The influence of DAT1 genotype on neural activation during emotional processing and impulse inhibition has not been examined. Forty-two healthy subjects were classified as 9DAT (n = 17) or 10DAT (n = 25) based on DAT1 genotype (9DAT = 9R/9R and 9R/10R; 10DAT = 10R/10R). Subjects underwent fMRI during non-emotional and emotional go/no-go tasks. Subjects were instructed to inhibit responses to letters, happy faces, or sad faces in separate blocks. Accuracy and reaction time did not differ between groups. Within group results showed activation in regions previously implicated in emotional processing and response inhibition. Between groups results showed increased activation in 9DAT individuals during inhibition. During letter inhibition, 9DAT individuals exhibited greater activation in right inferior parietal regions. During sad inhibition, 9DAT Individuals exhibited greater activation in frontal, posterior cingulate, precuneus, right cerebellar, left paracentral, and right occipital brain regions. The interaction between DAT genotype and response type in sad versus letter stimuli showed increased activation in 9DAT individuals during sad no-go responses in the anterior cingulate cortex, extending into frontal-orbital regions. 9DAT individuals have greater activation than 10DAT individuals during neutral and sad inhibition, showing that genotypic variation influencing basal dopamine levels can alter the neural basis of emotional processing and response inhibition. This may indicate that 9R carriers exert more effort to overcome increased basal dopamine activation when inhibiting responses in emotional contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anand, A., Verhoeff, P., Seneca, N., Zoghbi, S. S., Seibyl, J. P., Charney, D. S., & Innis, R. B. (2000). Brain SPECT imaging of amphetamine-induced dopamine release in euthymic bipolar disorder patients. The American Journal of Psychiatry, 157(7), 1108–1114.

    Article  CAS  PubMed  Google Scholar 

  • Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003). Stop signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6(2), 115–116.

    Article  CAS  PubMed  Google Scholar 

  • Badgaiyan, R. D., Fischman, A. J., & Alpert, N. M. (2009). Dopamine release during human emotional processing. NeuroImage, 47(4), 2041–2045.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertolino, A., Blasi, G., Latorre, V., Rubino, V., Rampino, A., Sinibaldi, L., Caforio, G., Petruzzella, V., Pizzuti, A., Scarabino, T., Nardini, M., Weinberger, D. R., & Dallapiccola, B. (2006). Additive effects of genetic variation in dopamine regulating genes on working memory cortical activity in human brain. The Journal of Neuroscience, 26(15), 3918–3922.

    Article  CAS  PubMed  Google Scholar 

  • Brehmer, Y., Westerberg, H., Bellander, M., Furth, D., Karlsson, S., & Backman, L. (2009). Working memory plasticity modulated by dopamine transporter genotype. Neuroscience Letters, 467(2), 117–120.

    Article  CAS  PubMed  Google Scholar 

  • Britton, J. C., Phan, K. L., Taylor, S. F., Welsh, R. C., Berridge, K. C., & Liberzon, I. (2006). Neural correlates of social and nonsocial emotions: an fMRI study. NeuroImage, 31(1), 397–409.

    Article  PubMed  Google Scholar 

  • Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6), 215–222.

    Article  CAS  PubMed  Google Scholar 

  • Caldu, X., Vendrell, P., Bartres-Faz, D., Clemente, I., Bargallo, N., Jurado, M. A., Sierra Grabulosa, J. M., & Junque, C. (2007). Impact of the f Val108/158 met and DAT genotypes on prefrontal function in healthy subjects. NeuroImage, 37(4), 1437–1444.

    Article  PubMed  Google Scholar 

  • Cornish, K. M., Manly, T., Savage, R., Swanson, J., Morisano, D., Butler, N., Grant, C., Cross, G., Bentley, L., & Hollis, C. P. (2005). Association of the dopamine transporter (DAT1) 10/10-repeat genotype with ADHD symptoms and response inhibition in a general population sample. Molecular Psychiatry, 10(7), 686–698.

    Article  CAS  PubMed  Google Scholar 

  • Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, An International Journal, 29, 162–173.

    Article  CAS  PubMed  Google Scholar 

  • Dreher, J. C., Kohn, P., Kolachana, B., Weinberger, D. R., & Berman, K. F. (2009). Variation in dopamine genes influences responsivity of the human reward system. Proceedings of the National Academy of Sciences of the United States of America, 106(2), 617–622.

    Article  CAS  PubMed  Google Scholar 

  • Felten, A., Montag, C., Markett, S., Walter, N. T., & Reuter, M. (2011). Genetically determined dopamine availability predicts disposition for depression. Brain Behav, 1(2), 109–118.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuke, S., Suo, S., Takahashi, N., Koike, H., Sasagawa, N., & Ishiura, S. (2001). The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expression. The Pharmacogenomics Journal, 1(2), 152–156.

    Article  CAS  PubMed  Google Scholar 

  • Gainetdinov, R., Jones, S., & Caron, M. (1999). Functional hyperdopaminergia in dopamine transporter knock-out mice. Biological Psychiatry, 46(3), 303–311.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Garcia, M., Clemente, I., Dominguez-Borras, J., & Escera, C. (2010a). Dopamine transporter regulates the enhancement of novelty processing by a negative emotional context. Neuropsychologia, 48(5), 1483–1488.

    Article  PubMed  Google Scholar 

  • Garcia-Garcia, M., Barcelo, F., Clemente, I. C., & Escera, C. (2010b). The role of the dopamine transporter DAT1 genotype on the neural correlates of cognitive flexibility. The European Journal of Neuroscience, 31(4), 754–760.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein, M., Brendel, G., Tuescher, O., Pan, H., Epstein, J., Beutel, M., Yang, Y., Thomas, K., Levy, K., Silverman, M., Clarkin, J., Posner, M., Kernberg, O., Stern, E., & Silbersweig, D. (2007). Neural substrates of the interaction of emotional stimulus processing and motor inhibitory control: an emotional linguistic go/no-go fMRI study. NeuroImage, 36(3), 1026–1040.

    Article  PubMed  Google Scholar 

  • Hershey, T., Black, K. J., Hartlein, J., Braver, T. S., Barch, D. M., Carl, J. L., Perlmutter, & S., J. (2004). Dopaminergic modulation of response inhibition: an fMRI study. Brain Research. Cognitive Brain Research, 20(3), 438–448.

    Article  CAS  PubMed  Google Scholar 

  • Hester, R., Barre, N., Mattingley, J. B., Foxe, J. J., & Garavan, H. (2007). Avoiding another mistake: error and posterror neural activity associated with adaptive posterror behavior change. Cognitive, Affective, & Behavioral Neuroscience, 7(4), 317–326.

    Article  Google Scholar 

  • Lahiri, D. K., & Nurnberger Jr., J. I. (1991). A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Research, 19(19), 5444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lotze, M., Montoya, P., Erb, M., Hulsmann, E., Flor, H., Klose, U., Birbaumer, N., & Grodd, W. (1999). Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. Journal of Cognitive Neuroscience, 11(5), 491–501.

    Article  CAS  PubMed  Google Scholar 

  • Mata, R., Hau, R., Papassotiropoulos, A., & Hertwig, R. (2012). DAT1 polymorphism is associated with risk taking in the balloon analogue risk task (BART). PloS One, 7(6), e39135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mill, J., Asherson, P., Browes, C., D’Souza, U., & Craig, I. (2002). Expression of the dopamine transporter gene is regulated by the 3’UTR VNTR: Evidence from brain and lymphocytes using quantitave RT-PCR. American Journal of Medical Genetics, 114(8), 975–979.

    Article  PubMed  Google Scholar 

  • Ondo, W. G., & Lai, D. (2008). Predictors of impulsivity and reward seeking behavior with dopamine agonists. Parkinsonism & Related Disorders, 14(1), 28–32.

    Article  Google Scholar 

  • Phan, K. L., Wager, T., Taylor, S. F., & Liberzon, I. (2002). Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. NeuroImage, 16(2), 331–348.

    Article  PubMed  Google Scholar 

  • Ramdani, C., Carbonnell, L., Vidal, F., Beranger, C., Dagher, A., & Hasbroucq, T. (2015). Dopamine precursors depletion impairs impulse control in healthy volunteers. Psychopharmacology, 232(2), 477–487.

    Article  CAS  PubMed  Google Scholar 

  • Ralph, R. J., Paulus, M. P., Fumagalli, F., Caron, M. G., & Geyer, M.A. (2001). Prepulse inhibition deficits and perseverative motor patterns in dopamine transporter knock-out mice: differential effects of D1 and D2 receptor antagonists. J or Neuro, 21(1), 305--313.

  • Rubia, K., Russell, T., Overmeyer, S., Brammer, M. J., Bullmore, E. T., Sharma, T., Simmons, A., Williams, S. C., Giampietro, V., Andrew, C. M., & Taylor, E. (2001). Mapping motor inhibition: conjunctive brain activations across different versions of go/no-go and stop tasks. NeuroImage, 13(2), 250–261.

    Article  CAS  PubMed  Google Scholar 

  • Sevy, S., Hassoun, Y., Bechara, A., Yechiam, E., Napolitano, B., Burdick, K., Delman, H., & Malhotra, A. (2006). Emotion-based decision-making in healthy subjects: short-term effects of reducing dopamine levels. Psychopharmacology, 188(2), 228–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shafritz, K. M., Collins, S. H., & Blumberg, H. P. (2006). The interaction of emotional and cognitive neural systems in emotionally guided response inhibition. NeuroImage, 31(1), 468–475.

    Article  PubMed  Google Scholar 

  • Staley, J., Boja, J., Carroll, F., Seltzman, H., Wyrick, C., Lewin, A., Abraham, P., & Mash, D. (1995). Mapping dopamine transporters in the human brain with novel selective cocaine analog. Synapse, 21(4), 364–372.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, H., Yahata, N., Koeda, M., Takano, A., Asai, K., Suhara, T., & Okubo, Y. (2005). Effects of dopaminergic and serotonergic manipulation on emotional processing: a pharmacological fMRI study. NeuroImage, 27(4), 991–1001.

    Article  PubMed  Google Scholar 

  • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N.,Mazoyer, B., & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273–289.

  • Vandenbergh, D. J., Persico, A. M., Hawkins, A. L., Griffin, C. A. Li, X., Jabs, E. W., & George, R. U. (1992). Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics 14(4), 1104--1106.

  • Watanabe, J., Sugiura, M., Sato, K., Sato, Y., Maeda, Y., Matsue, Y., Fukuda, H., & Kawashima, R. (2002). The human prefrontal and parietal association cortices are involved in NO-GO performances: an event-related fMRI study. NeuroImage, 17(3), 1207–1216.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Anand.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Funding

This project was funded by the NIMH to AA (R01MH075025).

Conflict of interest

None of the authors have any conflicts of interest related to this report.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, B.K., Murrell, J., Karne, H. et al. The effects of DAT1 genotype on fMRI activation in an emotional go/no-go task. Brain Imaging and Behavior 11, 185–193 (2017). https://doi.org/10.1007/s11682-016-9516-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-016-9516-7

Keywords

Navigation