Skip to main content
Log in

Social Cognition and Brain Morphology: Implications for Developmental Brain Dysfunction

Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

The social-cognitive deficits associated with several neurodevelopmental and neuropsychiatric disorders have been linked to structural and functional brain anomalies. Given the recent appreciation for quantitative approaches to behavior, in this study we examined the brain-behavior links in social cognition in healthy young adults from a quantitative approach. Twenty-two participants were administered quantitative measures of social cognition, including the social responsiveness scale (SRS), the empathizing questionnaire (EQ) and the systemizing questionnaire (SQ). Participants underwent a structural, 3-T magnetic resonance imaging (MRI) procedure that yielded both volumetric (voxel count) and asymmetry indices. Model fitting with backward elimination revealed that a combination of cortical, limbic and striatal regions accounted for significant variance in social behavior and cognitive styles that are typically associated with neurodevelopmental and neuropsychiatric disorders. Specifically, as caudate and amygdala volumes deviate from the typical R > L asymmetry, and cortical gray matter becomes more R > L asymmetrical, overall SRS and Emotion Recognition scores increase. Social Avoidance was explained by a combination of cortical gray matter, pallidum (rightward asymmetry) and caudate (deviation from rightward asymmetry). Rightward asymmetry of the pallidum was the sole predictor of Interpersonal Relationships and Repetitive Mannerisms. Increased D-scores on the EQ-SQ, an indication of greater systemizing relative to empathizing, was also explained by deviation from the typical R > L asymmetry of the caudate.

These findings extend the brain-behavior links observed in neurodevelopmental disorders to the normal distribution of traits in a healthy sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abell, F., Krams, M., & Ashburner, J. (1999). The neuroanatomy of autism: a voxel-based whole brain analysis of structural scans. Neureport, 10(8),1647-1651, Retrieved from http://journals.lww.com/neuroreport/Abstract/1999/06030/The_neuroanatomy_of_autism__a_voxel_based_whole.5.aspx

  • Amaral, D. G., Schumann, C. M., & Nordahl, C. W. (2008). Neuroanatomy of autism. Trends in Neurosciences, 31(3), 137–45. doi:10.1016/j.tins.2007.12.005.

    Article  CAS  PubMed  Google Scholar 

  • Aylward, E. H., Minshew, N. J., Field, K., Sparks, B. F., & Singh, N. (2002). Effects of age on brain volume and head circumference in autism. Neurology, 59(2), 175–183.

    Article  CAS  PubMed  Google Scholar 

  • Aylward, E. H., Minshew, N. J., Goldstein, G., Honeycutt, N. A., Augustine, A. M., Yates, K.O., et al. (1999). MRI volumes of amygdala and hippocampus in non–mentally retarded autistic adolescents and adults. Neurology 53, 2145–2150.

  • Babyak, M. (2004). What you see many not be what you get: A brief, nontechnical introduction to overfitting in regression-type models. Psychosomatic Medicine, 66, 411–421. doi:1097/01.psy.0000127692.23278.a9.

    PubMed  Google Scholar 

  • Baron-Cohen, S., Bolton, P., Wheelwright, S., Short, L., Mead, G., Smith, A., & Scahill, V. (1998). Autism occurs more often in families of physicists, engineers, andmathematicians. Autism, 2, 296–301.

    Article  Google Scholar 

  • Baron-Cohen, S., Wheelwright, S., Stott, C., Bolton, P., & Goodyer, I. (1997). Is there a link between engineering and autism? Autism, 1, 101–9.

    Article  Google Scholar 

  • Baron-Cohen, S, & Wheelwright, S. (1999). “Obsessions” in children with autism or Asperger syndrome. Content analysis in terms of core domains of cognition. The British journal of psychiatry : the journal of mental science, 175, 484–90. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10789283

  • Baron-Cohen, S., Richler, J., Bisarya, D., Gurunathan, N., & Wheelwright, S. (2003). The systemizing quotient: an investigation of adults with Asperger syndrome or high-functioning autism, and normal sex differences. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 358(1430), 361–74. doi:10.1098/rstb.2002.1206.

    Article  Google Scholar 

  • Baron-Cohen, Simon, & Wheelwright, S. (2004). The empathy quotient: an investigation of adults with Asperger syndrome or high functioning autism, and normal sex differences. Journal of autism and developmental disorders, 34(2), 163–75. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15162935

  • Baron-Cohen, S., Wheelwright, S., Burtenshaw, A., & Hobson, E. (2007). Mathematical Talent is Linked to Autism. Human Nature, 18(2), 125–131. doi:10.1007/s12110-007-9014-0.

    Article  Google Scholar 

  • Blumberg, H. P., Kaufman, J., Martin, A., Whiteman, R., Zhang, J. H., Gore, J. C., et al. (2003). Amygdala and hippocampal volumes in adolescents and adults with bipolar disorder. Archives of General Psychiatry, 60(12), 1201–8. doi:10.1001/archpsyc.60.12.1201.

    Article  PubMed  Google Scholar 

  • Brewer, J. (2009). Fully-automated volumetric MRI with normative ranges: translation to clinical practice. Behavioural neurology, 21(1), 21–28. Retrieved from http://iospress.metapress.com/index/XP32R6N667VTN135.pdf

  • Carper, R. A., & Courchesne, E. (2005). Localized enlargement of the frontal cortex in early autism. Biological Psychiatry, 57(2), 126–33. doi:10.1016/j.biopsych.2004.11.005.

    Article  PubMed  Google Scholar 

  • Chou, K. H., Cheng, Y., Chen, I. Y., Lin, C. P., & Chu, W. C. (2011). Sex-linked white matter microstructure of the social and analytic brain. NeuroImage, 54(1), 725–33. doi:10.1016/j.neuroimage.2010.07.010.

    Article  PubMed  Google Scholar 

  • Cicchetti, D. (1984). The emergence of developmental psychopathology. Child development, 55(1), 1–7. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6705613

  • Constantino, J. N. (2011). The quantitative nature of autistic social impairment. Pediatric Research, 69(5 Pt 2), 55R–62R. doi:10.1203/PDR.0b013e318212ec6e.

    Article  PubMed Central  PubMed  Google Scholar 

  • Constantino, J. N., Davis, S. A, Todd, R. D., Schindler, M. K., Gross, M. M., Brophy, S. L., … Reich, W. (2003). Validation of a brief quantitative measure of autistic traits: comparison of the social responsiveness scale with the autism diagnostic interview-revised. Journal of autism and developmental disorders, 33(4), 427–33. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12959421

  • Constantino, J. N., & Todd, R. D. (2003). Autistic Traits in the General Population: A twin study. Archives of General Psychiatry, 60(5), 524–530.

    Article  PubMed  Google Scholar 

  • Constantino, J. N., & Todd, R. D. (2005). Intergenerational transmission of subthreshold autistic traits in the general population. Biological Psychiatry, 57(6), 655–60. doi:10.1016/j.biopsych.2004.12.014.

    Article  PubMed  Google Scholar 

  • Constantino, J. N., Zhang, Y., Frazier, T., Abbacchi, A. M., & Law, P. (2010). Sibling recurrence and the genetic epidemiology of autism. The American Journal of Psychiatry, 167(11), 1349–56. doi:10.1176/appi.ajp.2010.09101470.

    Article  PubMed Central  PubMed  Google Scholar 

  • Courchesne, E., Carper, R., & Akshoomoff, N. (2003). Evidence of brain overgrowth in the first year of life in autism. Journal of the American Medical Association, 290(3), 337–344.

    Article  PubMed  Google Scholar 

  • Courchesne, E., Karns, C. M., Davis, H. R., Ziccardi, R., Carper, R. A., Tigue, Z. D., & Courchesne, R. Y. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology, 57(2), 245–54. doi:10.1212/WNL.57.2.245.

    Article  CAS  PubMed  Google Scholar 

  • Couture, S. M., Penn, D. L., Losh, M., Adolphs, R., Hurley, R., & Piven, J. (2010). Comparison of social cognitive functioning in schizophrenia and high functioning autism: more convergence than divergence. Psychological Medicine, 40(4), 569–79. doi:10.1017/S003329170999078X.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cristiano, A. S., Williams, S. N., Hawi, Z., An, J. Y., Bellgroce, M. A., Schwartz, C. E., Costa, L. d. F., & Clausianos, C. (2014). Neurodevelopmental and neuropsychiatric disorders represent an interconnected molecular system. Molecular Psychiatry, 19, 294–301. doi:10.1038/mp.2013.16.

    Article  Google Scholar 

  • Dickstein, D. P., Pescosolido, M. F., Reidy, B. L., Galvan, T., Kim, K. L., Seymour, K. E., & Barrett, R. P. (2013). Developmental meta-analysis of the functional neural correlates of autism spectrum disorders. Journal of the American Academy of Child and Adolescent Psychiatry, 52(3), 279–289.e16. doi:10.1016/j.jaac.2012.12.012.

    Article  PubMed  Google Scholar 

  • Evans, D. W., Leckman, J. F., Carter, A., Reznick, J. S., Henshaw, D., King, R. A., & Pauls, D. (1997). Ritual, Habit, and Perfectionism: The Prevalence and Development of Compulsive-like Behavior in Normal Young Children. Child Development, 68(1), 58–68. doi:10.1111/j.1467-8624.1997.tb01925.x.

    Article  CAS  PubMed  Google Scholar 

  • Filipek, P. A., Richelme, C., Kennedy, D. N., & Caviness, V. S. (1994). The young adult human brain: an MRI-based morphometric analysis. Cerebral cortex, 4(4), 344–60. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7950308

  • Focquaert, F., Steven-Wheeler, M. S., Vanneste, S., Doron, K. W., & Platek, S. M. (2010). Mindreading in individuals with an empathizing versus systemizing cognitive style: An fMRI study. Brain Research Bulletin, 83(5), 214–22. doi:10.1016/j.brainresbull.2010.08.008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frazier, T. W., Ratliff, K. R., Gruber, C., Zhang, Y., Law, P. A., & Constantino, J. N. (2014). Confirmatory factor analytic structure and measurement invariance of quantitative autistic traits measured by the Social Responsiveness Scale-2. Autism, 18(1), 31–44.

    Article  PubMed  Google Scholar 

  • Geschwind, N., & Galaburda, A. M. (1985). Cerebral lateralization. Biological mechanisms, associations, and pathology: III. A hypothesis and a program for research. Archives of neurology, 42(7), 634–54. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3874617

  • Groen, W., Teluij, M., Buitelaar, J., & Tendolkar, I. (2010). Amygdala and hippocampus enlargement during adolescence in autism. Journal of the American Academy of Child and Adolescent Psychiatry, 49(6), 552–60. doi:10.1016/j.jaac.2009.12.023.

    PubMed  Google Scholar 

  • Hardan, A. Y., Minshew, N. J., Mallikarjuhn, M., & Keshavan, M. S. (2001). Brain volume in autism. Journal of child neurology, 16(6), 421–4. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11417608

  • Hashimoto, T., Tayama, M., Murakawa, K., Yoshimoto, T., Miyazaki, M., Harada, M., & Kuroda, Y. (1995). Development of the brainstem and cerebellum in autistic patients. Journal of Autism and Developmental Disorders, 25(1), 1–18. doi:10.1007/BF02178163.

    Article  CAS  PubMed  Google Scholar 

  • Hazlett, H. C., Poe, M., Gerig, G., Smith, R. G., Provenzale, J., Ross, A., & Piven, J. (2005). Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years. Archives of General Psychiatry, 62(12), 1366–76. doi:10.1001/archpsyc.62.12.1366.

    Article  PubMed  Google Scholar 

  • Herbert, M. R., Ziegler, D. A., Makris, N., Filipek, P. A., Kemper, T. L., Normandin, J. J., & Caviness, V. S. (2004). Localization of white matter volume increase in autism and developmental language disorder. Annals of Neurology, 55(4), 530–40. doi:10.1002/ana.20032.

    Article  PubMed  Google Scholar 

  • Hier, D. B., LeMay, M., & Rosenberger, P. B. (1979). Autism and unfavorable left-right asymmetries of the brain. Journal of Autism and Developmental Disorders, 9(2), 153–9. doi:10.1007/BF01531531.

    Article  CAS  PubMed  Google Scholar 

  • Hollander, E., Anagnostou, E., Chaplin, W., Esposito, K., Haznedar, M. M., Licalzi, E., & Buchsbaum, M. (2005). Striatal volume on magnetic resonance imaging and repetitive behaviors in autism. Biological Psychiatry, 58(3), 226–32. doi:10.1016/j.biopsych.2005.03.040.

    Article  PubMed  Google Scholar 

  • Howard, M., Cowell, P., & Boucher, J. (2000). Convergent neuroanatomical and behavioural evidence of an amygdala hypothesis of autism.Neuroreport, 11(13), 2931–5. Retrieved from http://journals.lww.com/neuroreport/Abstract/2000/09110/Convergent_neuroanatomical_and_behavioural.20.aspx

  • Juranek, J., Filipek, P. A., Berenji, G. R., Modahl, C., Osann, K., & Spence, M. A. (2006). Association Between Amygdala Volume and Anxiety Level: Magnetic Resonance Imaging (MRI) Study in Autistic Children. Journal of Child Neurology, 21(12), 1051–8. doi:10.1177/7010.2006.00237.

    Article  PubMed  Google Scholar 

  • Kovacevic, S., Rafii, M., & Brewer, J. (2009). High-throughput, fully-automated volumetry for prediction of MMSE and CDR decline in mild cognitive impairment. Alzheimer disease and associated disorders, 23(2), 139–45. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688740/

  • Lai, M.-C., Lombardo, M. V., Chakrabarti, B., Ecker, C., Sadek, S. A., Wheelwright, S. J., & Baron-Cohen, S. (2012a). Individual differences in brain structure underpin empathizing-systemizing cognitive styles in male adults. NeuroImage, 61(4), 1347–54. doi:10.1016/j.neuroimage.2012.03.018.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lai, M.-C., Lombardo, M. V., Ruigrok, A. N. V., Chakrabarti, B., Wheelwright, S. J., Auyeung, B., & Baron-Cohen, S. (2012b). Cognition in males and females with autism: similarities and differences. PloS One, 7(10), e47198. doi:10.1371/journal.pone.0047198.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Langen, M., Durston, S., Staal, W. G., Palmen, S. J. M. C., & van Engeland, H. (2007). Caudate nucleus is enlarged in high-functioning medication-naive subjects with autism. Biological Psychiatry, 62(3), 262–6. doi:10.1016/j.biopsych.2006.09.040.

    Article  PubMed  Google Scholar 

  • Losh, M., Childress, D., Lam, K., & Piven, J. (2008). Defining key features of the broad autism phenotype: a comparison across parents of multiple- and single-incidence autism families. American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics, 147B(4), 424–33. doi:10.1002/ajmg.b.30612.

    Article  Google Scholar 

  • McAlonan, G. M., Cheung, V., Cheung, C., Suckling, J., Lam, G. Y., Tai, K. S., & Chua, S. E. (2005). Mapping the brain in autism. A voxel-based MRI study of volumetric differences and intercorrelations in autism. Brain : a journal of neurology, 128(Pt 2), 268–76. doi:10.1093/brain/awh332.

    Google Scholar 

  • Minshew, N. J., & Williams, D. L. (2007). The new neurobiology of autism: cortex, connectivity, and neuronal organization. Archives of Neurology, 64(7), 945–50. doi:10.1001/archneur.64.7.945.

    Article  PubMed Central  PubMed  Google Scholar 

  • Moreno-De-Luca, A., Myers, S. M., Challman, T. D., Moreno-De-Luca, D., Evans, D. W., & Ledbetter, D. H. (2013). Developmental brain dysfunction: revival and expansion of old concepts based on new genetic evidence. The Lancet Neurology, 12(4), 406–14. doi:10.1016/S1474-4422(13)70011-5.

    Article  PubMed Central  PubMed  Google Scholar 

  • Munson, J., Dawson, G., Abbott, R., Faja, S., Webb, S. J., Friedman, S. D., & Dager, S. R. (2006). Amygdalar volume and behavioral development in autism. Archives of General Psychiatry, 63(6), 686–93. doi:10.1001/archpsyc.63.6.686.

    Article  PubMed  Google Scholar 

  • Murphy, C. M., Deeley, Q., Daly, E. M., Ecker, C., O’Brien, F. M., Hallahan, B., & Murphy, D. G. (2012). Anatomy and aging of the amygdala and hippocampus in autism spectrum disorder: an in vivo magnetic resonance imaging study of Asperger syndrome. Autism research : official journal of the International Society for Autism Research, 5(1), 3–12. doi:10.1002/aur.227.

    Article  Google Scholar 

  • Oertel-Knochel, V., Knochel, C., Stablein, M., & Linden, D. E. J. (2012). Abnormal functional and structural asymmetry as biomarker for schizophrenia. Current topics in medicinal chemistry, 12(21), 2434–51. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23279182

  • Oertel-Knöchel, V., & Linden, D. E. J. (2011). Cerebral asymmetry in schizophrenia. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry, 17(5), 456–67. doi:10.1177/1073858410386493.

    Article  Google Scholar 

  • Pedraza, O., Bowers, D., & Gilmore, R. (2004). Asymmetry of the hippocampus and amygdala in MRI volumetric measurements of normal adults. Journal of the International Neuropsychological Society : JINS, 10(5), 664–78. doi:10.1017/S1355617704105080.

    Article  PubMed  Google Scholar 

  • Pietrefesa, A. S., & Evans, D. W. (2007). Affective and neuropsychological correlates of children’s rituals and compulsive-like behaviors: continuities and discontinuities with obsessive-compulsive disorder. Brain and Cognition, 65(1), 36–46. doi:10.1016/j.bandc.2006.02.007.

    Article  PubMed  Google Scholar 

  • Rojas, D. C., Peterson, E., Winterrowd, E., Reite, M. L., Rogers, S. J., & Tregellas, J. R. (2006). Regional gray matter volumetric changes in autism associated with social and repetitive behavior symptoms. BMC Psychiatry, 6, 56–68. doi:10.1186/1471-244×-6-56.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rojas, D. C., Smith, J. A., Benkers, T. L., Camou, S. L., Reite, M. L., & Rogers, S. J. (2004). Hippocampus and amygdala volumes in parents of children with autistic disorder. The American Journal of Psychiatry, 161(11), 2038–44. doi:10.1176/appi.ajp.161.11.2038.

    Article  PubMed  Google Scholar 

  • Ronald, A., Happé, F., & Price, T. (2006). Phenotypic and genetic overlap between autistic traits at the extremes of the general population. Journal of the American Academy of Child & Adolescent Psychiatry, 45(10), 1206–14. Retrieved from http://www.sciencedirect.com/science/article/pii/S0890856709623753

  • Ross, H. E., &: Young, L. J. (2009). Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Frontiers in Neuroendocrinology, 30, 534–547.

  • Saitoh, O., Karns, C. M., & Courchesne, E. (2001). Development of the hippocampal formation from 2 to 42 years MRI evidence of smaller area dentata in autism. Brain, 124(7), 1317–24.

    Article  CAS  PubMed  Google Scholar 

  • Schumann, C. M., Hamstra, J., Goodlin-Jones, B. L., Lotspeich, L. J., Kwon, H., Buonocore, M. H., & Amaral, D. G. (2004). The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. The Journal of neuroscience : the official journal of the Society for Neuroscience, 24(28), 6392–401. doi:10.1523/JNEUROSCI.1297-04.2004.

    Article  CAS  Google Scholar 

  • Sears, L. L., Vest, C., Mohamed, S., Bailey, J., Ranson, B. J., & Piven, J. (1999). An MRI study of the basal ganglia in autism. Progress in neuro-psychopharmacology & biological psychiatry, 23(4), 613–24. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10390720

  • Sharma, T., Lancaster, E., Sigmundsson, T., Lewis, S., Takei, N., Gurling, H., … Murray, R. (1999). Lack of normal pattern of cerebral asymmetry in familial schizophrenic patients and their relatives--The Maudsley Family Study. Schizophrenia research, 40(2), 111–20. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10593451

  • Skuse, D. H., & Gallagher, L. (2011). Genetic influences on social cognition. Pediatric Research, 69(5 Pt 2), 85R–91R. doi:10.1203/PDR.0b013e318212f562.

    Article  PubMed  Google Scholar 

  • Sparks, B. F., Friedman, S. D., Shaw, D. W., Aylward, E. H., Echelard, D., Artru, A. A., & Dager, S. R. (2002). Brain structural abnormalities in young children with autism spectrum disorder. Neurology, 59(2), 184–92.

    Article  CAS  PubMed  Google Scholar 

  • Stefansson, H., Meyer-Lindenberg, A., Steinberg, S., Magnusdottir, B., Morgen, K., Arnardsdotir, S., Bjornsdottir, G., et al. (2014). CNVs conferring risk of autism or schizophrenia affect cognition in controls. Nature, 505, 361–366. doi:10.1038/nature12818.

    Article  CAS  PubMed  Google Scholar 

  • Toga, A. W., & Thompson, P. M. (2003). Mapping brain asymmetry. Nature Reviews. Neuroscience, 4(1), 37–48. doi:10.1038/nrn1009.

    Article  CAS  PubMed  Google Scholar 

  • Verhoeven, J. S., De Cock, P., Lagae, L., & Sunaert, S. (2010). Neuroimaging of autism. Neuroradiology, 52(1), 3–14. doi:10.1007/s00234-009-0583-y.

    Article  PubMed  Google Scholar 

  • Via, E., Radua, J., Cardoner, N., Happé, F., & Mataix-cols, D. (2011). Meta-analysis of Gray Matter Abnormalities in Autism Spectrum Disorder, 68(4), 409–18.

    Google Scholar 

  • Virkud, Y. V., Todd, R. D., Abbacchi, A. M., Zhang, Y., & Constantino, J. N. (2009). Familial aggregation of quantitative autistic traits in multiplex versus simplex autism. American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics, 150B(3), 328–34. doi:10.1002/ajmg.b.30810.

    Article  Google Scholar 

  • Visser, T. A., Ohan, J. L., Whittle, S., Yücel, M., Simmons, J. G., & Allen, N. B. (2013). Sex differences in structural brain asymmetry predict overt aggression in early adolescents. Social Cognitive and Affective Neuroscience. doi:10.1093/scan/nst013.

    Google Scholar 

  • Wang, L., Joshi, S. C., Miller, M. I., & Csernansky, J. G. (2001). Statistical analysis of hippocampal asymmetry in schizophrenia. NeuroImage, 14(3), 531–45. doi:10.1006/nimg.2001.0830.

    Article  CAS  PubMed  Google Scholar 

  • Weiss, A. P., Dewitt, I., Goff, D., Ditman, T., & Heckers, S. (2005). Anterior and posterior hippocampal volumes in schizophrenia. Schizophrenia Research, 73(1), 103–12. doi:10.1016/j.schres.2004.05.018.

    Article  PubMed  Google Scholar 

  • Wheelwright, S., Baron-Cohen, S., Goldenfeld, N., Delaney, J., Fine, D., Smith, R., & Wakabayashi, A. (2006). Predicting Autism Spectrum Quotient (AQ) from the Systemizing Quotient-Revised (SQ-R) and Empathy Quotient (EQ). Brain Research, 1079(1), 47–56. doi:10.1016/j.brainres.2006.01.012.

    Article  CAS  PubMed  Google Scholar 

  • Woodward, N. D., Rogers, B., & Heckers, S. (2011). Functional resting-state networks are differentially affected in schizophrenia. Schizophrenia Research, 130(1–3), 86–93. doi:10.1016/j.schres.2011.03.010.

    Article  PubMed Central  PubMed  Google Scholar 

  • Young, L. J., Lim, M. M., Gingrich, B., & Insel, T. R. (2001). Cellular mechanisms of social attachment. Hormones and Behavior, 40, 133-138.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Evans.

Additional information

David W. Evans and Steven M. Lazar contributed equally to the manuscript

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evans, D.W., Lazar, S.M., Boomer, K.B. et al. Social Cognition and Brain Morphology: Implications for Developmental Brain Dysfunction. Brain Imaging and Behavior 9, 264–274 (2015). https://doi.org/10.1007/s11682-014-9304-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-014-9304-1

Keywords

Navigation