Skip to main content

Advertisement

Log in

Neuropathology of mild traumatic brain injury: relationship to neuroimaging findings

  • mTBI Special Issue
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Neuroimaging identified abnormalities associated with traumatic brain injury (TBI) are but gross indicators that reflect underlying trauma-induced neuropathology at the cellular level. This review examines how cellular pathology relates to neuroimaging findings with the objective of more closely relating how neuroimaging findings reveal underlying neuropathology. Throughout this review an attempt will be made to relate what is directly known from post-mortem microscopic and gross anatomical studies of TBI of all severity levels to the types of lesions and abnormalities observed in contemporary neuroimaging of TBI, with an emphasis on mild traumatic brain injury (mTBI). However, it is impossible to discuss the neuropathology of mTBI without discussing what occurs with more severe injury and viewing pathological changes on some continuum from the mildest to the most severe. Historical milestones in understanding the neuropathology of mTBI are reviewed along with implications for future directions in the examination of neuroimaging and neuropathological correlates of TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Agnati, L. F., Genedani, S., et al. (2007). One century of progress in neuroscience founded on Golgi and Cajal’s outstanding experimental and theoretical contributions. Brain Research Reviews, 55(1), 167–189.

    PubMed  CAS  Google Scholar 

  • Albensi, B. C., Knoblach, S. M., et al. (2000). Diffusion and high resolution MRI of traumatic brain injury in rats: time course and correlation with histology. Experimental Neurology, 162(1), 61–72.

    PubMed  CAS  Google Scholar 

  • Babikian, T., Freier, M. C., et al. (2006). MR spectroscopy: predicting long-term neuropsychological outcome following pediatric TBI. Journal of Magnetic Resonance Imaging: JMRI, 24(4), 801–811.

    PubMed  Google Scholar 

  • Bain, A. C., Raghupathi, R., et al. (2001). Dynamic stretch correlates to both morphological abnormalities and electrophysiological impairment in a model of traumatic axonal injury. Journal of Neurotrauma, 18(5), 499–511.

    PubMed  CAS  Google Scholar 

  • Barkhoudarian, G., Hovda, D. A., et al. (2011). The molecular pathophysiology of concussive brain injury. Clinics in Sports Medicine, 30(1), 33–48. vii–iii.

    PubMed  Google Scholar 

  • Barr, W. B., Prichep, L. S., et al. (2011). Measuring brain electrical activity to track recovery from sport-related concussion. Brain Injury, [BI].

  • Beauchamp, M. H., Ditchfield, M., et al. (2011). Detecting traumatic brain lesions in children: CT vs conventional MRI vs susceptibility weighted imaging (SWI). Journal of Neurotrauma, 28(6), 915-927

    Google Scholar 

  • Belanger, H. G., Vanderploeg, R. D., et al. (2007). Recent neuroimaging techniques in mild traumatic brain injury. The Journal of Neuropsychiatry and Clinical Neurosciences, 19(1), 5–20.

    PubMed  Google Scholar 

  • Bendlin, B. B., Ries, M. L., et al. (2008). Longitudinal changes in patients with traumatic brain injury assessed with diffusion-tensor and volumetric imaging. NeuroImage, 42(2), 503–514.

    PubMed  Google Scholar 

  • Benson, R. R., Meda, S. A., et al. (2007). Global white matter analysis of diffusion tensor images is predictive of injury severity in traumatic brain injury. Journal of Neurotrauma, 24(3), 446–459.

    PubMed  Google Scholar 

  • Biasca, N., & Maxwell, W. L. (2007). Minor traumatic brain injury in sports: a review in order to prevent neurological sequelae. Progress in Brain Research, 161, 263–291.

    PubMed  Google Scholar 

  • Bigler, E. D. (2007). Anterior and middle cranial fossa in traumatic brain injury: relevant neuroanatomy and neuropathology in the study of neuropsychological outcome. Neuropsychology, 21(5), 515–531.

    PubMed  Google Scholar 

  • Bigler, E. D., McCauley, S. R., et al. (2010). The temporal stem in traumatic brain injury: preliminary findings. Brain Imaging and Behavior, 4(3–4), 270–282.

    PubMed  Google Scholar 

  • Bigler, E. D., Pertab, J., Merkley, T. L., Newsome, M. R., Scheibel, R. S., Wilde, E. A., et al. (2011). Working memory correlates of brain structure and function in child traumatic brain injury. International Journal of Psychophysiology (in press).

  • Bigler, E. D. M., & Maxwell, W. L. (2011). Neuroimaging and neuropathology of TBI. NeuroRehabilitation, 28(2), 63–74.

    PubMed  Google Scholar 

  • Blankenberg, F. G. (2008). Monitoring of treatment-induced apoptosis in oncology with PET and SPECT. Current Pharmaceutical Design, 14(28), 2974–2982.

    PubMed  CAS  Google Scholar 

  • Blumbergs, P. C., Scott, G., et al. (1995). Topography of axonal injury as defined by amyloid precursor protein and the sector scoring method in mild and severe closed head injury. Journal of Neurotrauma, 12(4), 565–572.

    PubMed  CAS  Google Scholar 

  • Bouilleret, V., Cardamone, L., et al. (2009). Progressive brain changes on serial manganese-enhanced MRI following traumatic brain injury in the rat. Journal of Neurotrauma, 26(11), 1999–2013.

    PubMed  Google Scholar 

  • Bramlett, H. M., & Dietrich, W. D. (2002). Quantitative structural changes in white and gray matter 1 year following traumatic brain injury in rats. Acta Neuropathologica, 103(6), 607–614.

    PubMed  Google Scholar 

  • Brandstack, N., Kurki, T., et al. (2011). Diffusivity of normal-appearing tissue in acute traumatic brain injury. Clinical Neuroradiology, 21(2), 75–82.

    PubMed  CAS  Google Scholar 

  • Brenner, L. A., Terrio, H., et al. (2010). Neuropsychological test performance in soldiers with blast-related mild TBI. Neuropsychology, 24(2), 160–167.

    PubMed  Google Scholar 

  • Budde, M. D., Janes, L., et al. (2011). The contribution of gliosis to diffusion tensor anisotropy and tractography following traumatic brain injury: validation in the rat using Fourier analysis of stained tissue sections. Brain: A Journal of Neurology.

  • Buki, A., Okonkwo, D. O., et al. (2000). Cytochrome c release and caspase activation in traumatic axonal injury. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 20(8), 2825–2834.

    CAS  Google Scholar 

  • Chanraud, S., Pitel, A. L., et al. (2010). Dual tasking and working memory in alcoholism: relation to frontocerebellar circuitry. Neuropsychopharmacology, 35(9), 1868–1878.

    PubMed  Google Scholar 

  • Chanraud, S., Zahr, N., et al. (2010). MR diffusion tensor imaging: a window into white matter integrity of the working brain. Neuropsychology Review, 20(2), 209–225.

    PubMed  Google Scholar 

  • Chen, J. K., Johnston, K. M., et al. (2008). Neural substrates of symptoms of depression following concussion in male athletes with persisting postconcussion symptoms. Archives of General Psychiatry, 65(1), 81–89.

    PubMed  Google Scholar 

  • Clark, R. S. B., Chen, M., et al. (2001). Detection of single- and double-strand DNA breaks after traumatic brain injury in rats: comparison of in situ labeling techniques using DNA polymerase I, the Klenow fragment of DNA polymerase I, and terminal deoxynucleotidyl transferase. Journal of Neurotrauma, 18(7), 675–689.

    PubMed  Google Scholar 

  • Cloots, R. J., Gervaise, H. M., et al. (2008). Biomechanics of traumatic brain injury: influences of the morphologic heterogeneities of the cerebral cortex. Annals of Biomedical Engineering, 36(7), 1203–1215.

    PubMed  CAS  Google Scholar 

  • Cloots, R. J., van Dommelen, J. A., et al. (2010). Micromechanics of diffuse axonal injury: influence of axonal orientation and anisotropy. Biomech Model Mechanobiol, 10(3), 413–422.

    Google Scholar 

  • Cohen, B. A., Inglese, M., et al. (2007). Proton MR spectroscopy and MRI-volumetry in mild traumatic brain injury. AJNR. American Journal of Neuroradiology, 28(5), 907–913.

    PubMed  CAS  Google Scholar 

  • Colicos, M. A., & Dash, P. K. (1996). Apoptotic morphology of dentate gyrus granule cells following experimental cortical impact injury in rats: possible role in spatial memory deficits. Brain Research, 739(1–2), 120–131.

    PubMed  CAS  Google Scholar 

  • Collewijn, H., & Van Harreveld, A. (1966). Intracellular recording from cat spinal motoneurones during acute asphyxia. The Journal of Physiology, 185(1), 1–14.

    PubMed  CAS  Google Scholar 

  • Courville, C. B. (1952). Traumatic alterations in the neurons of the human brain incident to craniocerebral injury; a comparison with Cajal’s observations of experimental animals. Bulletin of the Los Angeles Neurological Society, 17(1–2), 71–93.

    PubMed  CAS  Google Scholar 

  • Cubon, V. A., Putukian, M., et al. (2011). A diffusion tensor imaging study on the white matter skeleton in individuals with sports-related concussion. Journal of Neurotrauma, 28(2), 189–201.

    PubMed  Google Scholar 

  • Davenport, N. D., Lim, K. O., et al. (2011). Diffuse and spatially variable white matter disruptions are associated with blast-related mild traumatic brain injury. Neuroimage. in press

  • De Beaumont, L., Tremblay, S., et al. (2011). Altered bidirectional plasticity and reduced implicit motor learning in concussed athletes. Cerebral Cortex.

  • DeKosky, S. T., Ikonomovic, M. D., et al. (2010). Traumatic brain injury–football, warfare, and long-term effects. The New England Journal of Medicine, 363(14), 1293–1296.

    PubMed  CAS  Google Scholar 

  • Ding, K., Marquez de la Plata, C., et al. (2008). Cerebral atrophy after traumatic white matter injury: correlation with acute neuroimaging and outcome. Journal of Neurotrauma, 25(12), 1433–1440.

    PubMed  Google Scholar 

  • Downes, C. E., & Crack, P. J. (2010). Neural injury following stroke: are Toll-like receptors the link between the immune system and the CNS? British Journal of Pharmacology, 160(8), 1872–1888.

    PubMed  CAS  Google Scholar 

  • Duma, S. M., & Rowson, S. (2009). Every Newton Hertz: a macro to micro approach to investigating brain injury. Conference Proceedings—IEEE Engineering in Medicine and Biology Society, 2009, 1123–1126.

    Google Scholar 

  • Elkin, B. S., & Morrison, B., 3rd. (2007). Region-specific tolerance criteria for the living brain. Stapp Car Crash Journal, 51, 127–138.

    PubMed  Google Scholar 

  • Ellemberg, D., Henry, L. C., et al. (2009). Advances in sport concussion assessment: from behavioral to brain imaging measures. Journal of Neurotrauma, 26(12), 2365–2382.

    PubMed  Google Scholar 

  • Fabricius, M., Fuhr, S., et al. (2006). Cortical spreading depression and peri-infarct depolarization in acutely injured human cerebral cortex. Brain: A Journal of Neurology, 129(Pt 3), 778–790.

    Google Scholar 

  • Farkas, O., & Povlishock, J. T. (2007). Cellular and subcellular change evoked by diffuse traumatic brain injury: a complex web of change extending far beyond focal damage. Progress in Brain Research, 161, 43–59.

    PubMed  CAS  Google Scholar 

  • Feng, Y., Abney, T. M., et al. (2010). Relative brain displacement and deformation during constrained mild frontal head impact. Journal of the Royal Society, Interface, 7(53), 1677–1688.

    PubMed  CAS  Google Scholar 

  • Fuster, J. M. (2009). Cortex and memory: emergence of a new paradigm. Journal of Cognitive Neuroscience, 21(11), 2047–2072.

    PubMed  Google Scholar 

  • Gale, S. D., Baxter, L., et al. (2005). Traumatic brain injury and grey matter concentration: a preliminary voxel based morphometry study. Journal of Neurology, Neurosurgery, and Psychiatry, 76(7), 984–988.

    PubMed  CAS  Google Scholar 

  • Gao, X., & Chen, J. (2011). Mild traumatic brain injury results in extensive neuronal degeneration in the cerebral cortex. Journal of Neuropathology and Experimental Neurology, 70(3), 183–191.

    PubMed  Google Scholar 

  • Gasparetto, E. L., Rueda Lopes, F. C., et al. (2011). Diffusion imaging in traumatic brain injury. Neuroimaging Clinics of North America, 21(1), 115–125. viii.

    PubMed  Google Scholar 

  • Gavett, B. E., Stern, R. A., et al. (2010). Mild traumatic brain injury: a risk factor for neurodegeneration. Alzheimer’s Research & Therapy, 2(3), 18.

    Google Scholar 

  • Ge, Y., Patel, M. B., et al. (2009). Assessment of thalamic perfusion in patients with mild traumatic brain injury by true FISP arterial spin labelling MR imaging at 3T. Brain Injury, 23(7), 666–674.

    PubMed  Google Scholar 

  • Geary, E. K., Kraus, M. F., et al. (2011). Verbal learning strategy following mild traumatic brain injury. Journal of the International Neuropsychological Society: JINS, 1–11.

  • Ghosh, A., Wilde, E. A., et al. (2009). The relation between Glasgow Coma Scale score and later cerebral atrophy in paediatric traumatic brain injury. Brain Injury, 23(3), 228–233.

    PubMed  Google Scholar 

  • Giza, C. C., & Hovda, D. A. (2000). Ionic and metabolic consequences of concussion. In R. C. Cantu & R. I. Cantu (Eds.), Neurologic athletic and spine injuries (pp. 80–100). St. Louis: W.B. Saunders.

    Google Scholar 

  • Giza, C. C., & Hovda, D. A. (2001). The neurometabolic cascade of concussion. Journal of Athletic Training, 36(3), 228–235.

    PubMed  Google Scholar 

  • Gosselin, N., Bottari, C., et al. (2011). Electrophysiology and functional MRI in post-acute mild traumatic brain injury. Journal of Neurotrauma, 28(3), 329–341.

    PubMed  Google Scholar 

  • Govind, V., Gold, S., et al. (2010). Whole-brain proton MR spectroscopic imaging of mild-to-moderate traumatic brain injury and correlation with neuropsychological deficits. Journal of Neurotrauma, 27(3), 483–496.

    PubMed  Google Scholar 

  • Graham, D. I., & Lantos, P. L. (2002). Greenfield’s Neuropathology (Volume I). London: Arnold Publishing.

    Google Scholar 

  • Greenberg, G., Mikulis, D. J., et al. (2008). Use of diffusion tensor imaging to examine subacute white matter injury progression in moderate to severe traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 89(12 Suppl), S45–S50.

    PubMed  Google Scholar 

  • Greer, J. E., McGinn, M. J., et al. (2011). Diffuse traumatic axonal injury in the mouse induces atrophy, c-Jun activation, and axonal outgrowth in the axotomized neuronal population. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31(13), 5089–5105.

    CAS  Google Scholar 

  • Grossman, E. J., Ge, Y. et al. (2011). Thalamus and cognitive impairment in Mild Traumatic Brain Injury: A Diffusional Kurtosis Imaging Study. Journal of Neurotrauma.

  • Guskiewicz, K. M., & Mihalik, J. P. (2011). Biomechanics of sport concussion: quest for the elusive injury threshold. Exercise and Sport Sciences Reviews, 39(1), 4–11.

    PubMed  Google Scholar 

  • Harrison, L. C., Raunio, M., et al. (2010). MRI texture analysis in multiple sclerosis: toward a clinical analysis protocol. Academic Radiology, 17(6), 696–707.

    PubMed  Google Scholar 

  • Hartings, J. A., Watanabe, T., et al. (2011). Spreading depolarizations have prolonged direct current shifts and are associated with poor outcome in brain trauma. Brain: A Journal of Neurology, 134(Pt 5), 1529–1540.

    Google Scholar 

  • Hasiloglu, Z. I., Albayram, S., et al. (2011). Cerebral microhemorrhages detected by susceptibility-weighted imaging in amateur boxers. AJNR. American Journal of Neuroradiology, 32(1), 99–102.

    PubMed  CAS  Google Scholar 

  • Helmy, A., Carpenter, K. L., et al. (2010). The cytokine response to human traumatic brain injury: temporal profiles and evidence for cerebral parenchymal production. Journal of Cerebral Blood Flow and Metabolism.

  • Henry, L. C., Tremblay, S., et al. (2010). Neurometabolic changes in the acute phase after sports concussions correlate with symptom severity. Journal of Neurotrauma, 27(1), 65–76.

    PubMed  Google Scholar 

  • Hillary, F. G., Medaglia, J. D., et al. (2011). Examining working memory task acquisition in a disrupted neural network. Brain: A Journal of Neurology, 134(Pt 5), 1555–1570.

    Google Scholar 

  • Holli, K. K., Harrison, L., et al. (2010). Texture analysis of MR images of patients with mild traumatic brain injury. BMC Medical Imaging, 10, 8.

    PubMed  Google Scholar 

  • Holli, K. K., Waljas, M., et al. (2010). Mild traumatic brain injury: tissue texture analysis correlated to neuropsychological and DTI findings. Academic Radiology, 17(9), 1096–1102.

    PubMed  Google Scholar 

  • Hunter, J. V., Wilde, E. A., et al. (2011). Emerging imaging tools for use with traumatic brain injury research. Journal of Neurotrauma. in press

  • Inglese, M., Makani, S., et al. (2005). Diffuse axonal injury in mild traumatic brain injury: a diffusion tensor imaging study. Journal of Neurosurgery, 103(2), 298–303.

    PubMed  Google Scholar 

  • Inglese, M., Grossman, R. I., et al. (2006). Clinical significance of dilated Virchow-Robin spaces in mild traumatic brain injury. Brain Injury, 20(1), 15–21.

    PubMed  Google Scholar 

  • Irimia, A., Chambers, M. C., et al. (2011). Comparison of acute and chronic traumatic brain injury using semi-automatic multimodal segmentation of MR volumes. Journal of Neurotrauma, 28(11), 2287–2306.

    PubMed  Google Scholar 

  • Iverson, G. L., Lovell, M. R., et al. (2000). Prevalence of abnormal CT-scans following mild head injury. Brain Injury, 14(12), 1057–1061.

    PubMed  CAS  Google Scholar 

  • Jafari, S. S., Nielson, M., et al. (1998). Axonal cytoskeletal changes after nondisruptive axonal injury. II. Intermediate sized axons. Journal of Neurotrauma, 15(11), 955–966.

    PubMed  CAS  Google Scholar 

  • Jander, S., Schroeter, M., et al. (2001). Cortical spreading depression induces proinflammatory cytokine gene expression in the rat brain. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 21(3), 218–225.

    CAS  Google Scholar 

  • Jantzen, K. J. (2010). Functional magnetic resonance imaging of mild traumatic brain injury. The Journal of Head Trauma Rehabilitation, 25(4), 256–266.

    PubMed  Google Scholar 

  • Johnson, B., Zhang, K., et al. (2011). Metabolic alterations in corpus callosum may compromise brain functional connectivity in MTBI patients: an (1)H-MRS study. Neuroscience Letters.

  • Kerr, J. F. (1971). Shrinkage necrosis: a distinct mode of cellular death. The Journal of Pathology, 105(1), 13–20.

    PubMed  CAS  Google Scholar 

  • Kilinc, D., Gallo, G., et al. (2009). Mechanical membrane injury induces axonal beading through localized activation of calpain. Experimental Neurology, 219(2), 553–561.

    PubMed  CAS  Google Scholar 

  • Kilinc, D., Peyrin, J. M., et al. (2011). Wallerian-like degeneration of central neurons after synchronized and geometrically registered mass axotomy in a three-compartmental microfluidic chip. Neurotoxicity Research, 19(1), 149–161.

    PubMed  Google Scholar 

  • Kinnunen, K. M., Greenwood, R., et al. (2011). White matter damage and cognitive impairment after traumatic brain injury. Brain: A Journal of Neurology, 134(Pt 2), 449–463.

    Google Scholar 

  • Konrad, C., Geburek, A. J., et al. (2010). Long-term cognitive and emotional consequences of mild traumatic brain injury. Psychological Medicine, 1–15.

  • Kraus, M. F., Susmaras, T., et al. (2007). White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. Brain, 130(Pt 10), 2508–2519.

    PubMed  Google Scholar 

  • Kuceyeski, A., Maruta, J., et al. (2011). The generation and validation of white matter connectivity importance maps. NeuroImage, 58(1), 109–121.

    PubMed  Google Scholar 

  • Kurca, E., Sivak, S., et al. (2006). Impaired cognitive functions in mild traumatic brain injury patients with normal and pathologic magnetic resonance imaging. Neuroradiology, 48(9), 661–669.

    PubMed  CAS  Google Scholar 

  • Lange, R. T., Iverson, G. L., et al. (2009). Neuropsychological functioning following complicated vs. uncomplicated mild traumatic brain injury. Brain Injury, 23(2), 83–91.

    PubMed  Google Scholar 

  • Lange, R. T., Iverson, G. L., et al. (2011). Diffusion tensor imaging findings are not strongly associated with postconcussional disorder 2 months following mild traumatic brain injury. The Journal of Head Trauma Rehabilitation.

  • LaPlaca, M. C., & Prado, G. R. (2010). Neural mechanobiology and neuronal vulnerability to traumatic loading. Journal of Biomechanics, 43(1), 71–78.

    PubMed  Google Scholar 

  • LaPlaca, M. C., Simon, C. M., et al. (2007). CNS injury biomechanics and experimental models. Progress in Brain Research, 161, 13–26.

    PubMed  CAS  Google Scholar 

  • LaPlaca, M. C., & Meaney, D. F. (2011). Perspectives on the role of bioengineering in neurotrauma research. Journal of Neurotrauma, 28(11), 2201–2202.

    PubMed  Google Scholar 

  • Le, T. H., & Gean, A. D. (2009). Neuroimaging of traumatic brain injury. The Mount Sinai Journal of Medicine, 76(2), 145–162.

    Google Scholar 

  • Levine, B., Kovacevic, N., et al. (2008). The Toronto traumatic brain injury study: injury severity and quantified MRI. Neurology, 70(10), 771–778.

    PubMed  CAS  Google Scholar 

  • Lewine, J. D., Davis, J. T., et al. (2007). Objective documentation of traumatic brain injury subsequent to mild head trauma: multimodal brain imaging with MEG, SPECT, and MRI. The Journal of Head Trauma Rehabilitation, 22(3), 141–155.

    PubMed  Google Scholar 

  • Li, X. Y., & Feng, D. F. (2009). Diffuse axonal injury: novel insights into detection and treatment. Journal of Clinical Neuroscience, 16(5), 614–619.

    PubMed  Google Scholar 

  • Li, X., Link, J. M., et al. (2008). Site-specific labeling of annexin V with F-18 for apoptosis imaging. Bioconjugate Chemistry, 19(8), 1684–1688.

    PubMed  CAS  Google Scholar 

  • Lo, C., Shifteh, K., et al. (2009). Diffusion tensor imaging abnormalities in patients with mild traumatic brain injury and neurocognitive impairment. Journal of Computer Assisted Tomography, 33(2), 293–297.

    PubMed  Google Scholar 

  • Lo, T. P., Jr., Cho, K. S., et al. (2009). Systemic hypothermia improves histological and functional outcome after cervical spinal cord contusion in rats. The Journal of Comparative Neurology, 514(5), 433–448.

    PubMed  Google Scholar 

  • Mac Donald, C. L., Johnson, A. M., et al. (2011). Detection of blast-related traumatic brain injury in U.S. military personnel. The New England Journal of Medicine, 364(22), 2091–2100.

    PubMed  CAS  Google Scholar 

  • MacKenzie, J. D., Siddiqi, F., et al. (2002). Brain atrophy in mild or moderate traumatic brain injury: a longitudinal quantitative analysis. AJNR. American Journal of Neuroradiology, 23(9), 1509–1515.

    PubMed  Google Scholar 

  • Mao, H., Yang, K. H., et al. (2010). Computational neurotrauma-design, simulation, and analysis of controlled cortical impact model. Biomechanics and Modeling in Mechanobiology, 9(6), 763–772.

    PubMed  Google Scholar 

  • Marino, S., Ciurleo, R., et al. (2011). 1H-MR spectroscopy in traumatic brain injury. Neurocritical Care, 14(1), 127–133.

    PubMed  Google Scholar 

  • Marquez de la Plata, C., Ardelean, A., et al. (2007). Magnetic resonance imaging of diffuse axonal injury: quantitative assessment of white matter lesion volume. Journal of Neurotrauma, 24(4), 591–598.

    PubMed  Google Scholar 

  • Maruishi, M., Miyatani, M., et al. (2007). Compensatory cortical activation during performance of an attention task by patients with diffuse axonal injury: a functional magnetic resonance imaging study. Journal of Neurology, Neurosurgery, and Psychiatry, 78(2), 168–173.

    PubMed  CAS  Google Scholar 

  • Maruta, J., Lee, S. W., et al. (2010). A unified science of concussion. Annals of the New York Academy of Sciences, 1208, 58–66.

    PubMed  Google Scholar 

  • Mathew, P., Graham, D. I., et al. (1994). Focal brain injury: histological evidence of delayed inflammatory response in a new rodent model of focal cortical injury. Acta Neurochirurgica Supplementum (Wien), 60, 428–430.

    CAS  Google Scholar 

  • Maxwell, W. L., & Graham, D. I. (1997). Loss of axonal microtubules and neurofilaments after stretch-injury to guinea pig optic nerve fibers. Journal of Neurotrauma, 14(9), 603–614.

    PubMed  CAS  Google Scholar 

  • Maxwell, W. L., Hardy, I. G., et al. (1992). Changes in the choroid plexus, responses by intrinsic epiplexus cells and recruitment from monocytes after experimental head acceleration injury in the non-human primate. Acta Neuropathologica, 84(1), 78–84.

    PubMed  CAS  Google Scholar 

  • Maxwell, W. L., Whitfield, P. C., et al. (1992). The cerebrovascular response to experimental lateral head acceleration. Acta Neuropathologica, 84(3), 289–296.

    PubMed  CAS  Google Scholar 

  • Maxwell, W. L., Watt, C., et al. (1993). Ultrastructural evidence of axonal shearing as a result of lateral acceleration of the head in non-human primates. Acta Neuropathologica, 86(2), 136–144.

    PubMed  CAS  Google Scholar 

  • Maxwell, W. L., Bullock, R., et al. (1994). Massive astrocytic swelling in response to extracellular glutamate–a possible mechanism for post-traumatic brain swelling? Acta Neurochirurgica Supplementum, 60, 465–467.

    PubMed  CAS  Google Scholar 

  • Maxwell, W. L., McCreath, B. J., et al. (1995). Cytochemical evidence for redistribution of membrane pump calcium-ATPase and ecto-Ca-ATPase activity, and calcium influx in myelinated nerve fibres of the optic nerve after stretch injury. Journal of Neurocytology, 24(12), 925–942.

    PubMed  CAS  Google Scholar 

  • Maxwell, W. L., Povlishock, J. T., et al. (1997). A mechanistic analysis of nondisruptive axonal injury: a review. Journal of Neurotrauma, 14(7), 419–440.

    PubMed  CAS  Google Scholar 

  • Maxwell, W. L., Domleo, A., et al. (2003). Post-acute alterations in the axonal cytoskeleton after traumatic axonal injury. Journal of Neurotrauma, 20(2), 151–168.

    PubMed  Google Scholar 

  • Maxwell, W. L., MacKinnon, M. A., et al. (2006). Thalamic nuclei after human blunt head injury. Journal of Neuropathology and Experimental Neurology, 65(5), 478–488.

    PubMed  Google Scholar 

  • Maxwell, W. L., Irvine, A., et al. (1991). Focal axonal injury: the early axonal response to stretch. Journal of Neurocytology, 20(3), 157–164.

    PubMed  CAS  Google Scholar 

  • Maxwell, W. L., MacKinnon, M. A., et al. (2010). Stereology of cerebral cortex after traumatic brain injury matched to the Glasgow outcome score. Brain: A Journal of Neurology, 133(Pt 1), 139–160.

    Google Scholar 

  • Mayer, A. R., Ling, J., et al. (2010). A prospective diffusion tensor imaging study in mild traumatic brain injury. Neurology, 74(8), 643–650.

    PubMed  CAS  Google Scholar 

  • Mayer, A. R., Mannell, M. V., et al. (2011). Functional connectivity in mild traumatic brain injury. Human Brain Mapping.

  • Mazzeo, A. T., Beat, A., et al. (2009). The role of mitochondrial transition pore, and its modulation, in traumatic brain injury and delayed neurodegeneration after TBI. Experimental Neurology, 218(2), 363–370.

    PubMed  CAS  Google Scholar 

  • McAllister, T. W., Flashman, L. A., et al. (2006). Mechanisms of working memory dysfunction after mild and moderate TBI: evidence from functional MRI and neurogenetics. Journal of Neurotrauma, 23(10), 1450–1467.

    PubMed  Google Scholar 

  • McAllister, K. A., Usrey, W. M., Noctor, S. C., & Rayport, S. (Eds.). (2010). Fundamentals of cellular neurobiology. Essentials of Neuropsychiatry and Behavioral Neuroscience. Washington: American Psychiatric Publishing, Inc.

    Google Scholar 

  • McAuley, G., Schrag, M., et al. (2010). Quantification of punctate iron sources using magnetic resonance phase. Magnetic Resonance in Medicine, 63(1), 106–115.

    PubMed  CAS  Google Scholar 

  • McCrea, M., Prichep, L., et al. (2010). Acute effects and recovery after sport-related concussion: a neurocognitive and quantitative brain electrical activity study. The Journal of Head Trauma Rehabilitation, 25(4), 283–292.

    PubMed  Google Scholar 

  • McIntosh, A. S., & McCrory, P. (2005). Preventing head and neck injury. British Journal of Sports Medicine, 39(6), 314–318.

    PubMed  CAS  Google Scholar 

  • McKee, A. C., Cantu, R. C., et al. (2009). Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. Journal of Neuropathology and Experimental Neurology, 68(7), 709–735.

    PubMed  Google Scholar 

  • McKee, A. C., Gavett, B. E., Stern, R. A., Nowinski, C. J., Cantu, R. C., Kowall, N. W., Perl, D. P., Hedley-Whyte, E. T., Price, B., Sullivan, P. M., Lee, H.-S., Kubilus, C. A., Daneshvar, D. H., Wulff, M., & Budson, A. E. (2010). TDP-43 proteinopathy and motor neuron disease in chronic traumatic encephalopathy. Journal of Neuropathology and Experimental Neurology, 69(9), 918–929.

    PubMed  CAS  Google Scholar 

  • Meaney, D. F., & Smith, D. H. (2011). Biomechanics of concussion. Clinics in Sports Medicine, 30(1), 19–31. vii.

    PubMed  Google Scholar 

  • Medaglia, J. D., Chiou, K. S., et al. (2011). The less BOLD, the Wiser: support for the latent resource hypothesis after traumatic brain injury. Human Brain Mapping.

  • Merkley, T. L., Bigler, E. D., et al. (2008). Diffuse changes in cortical thickness in pediatric moderate-to-severe traumatic brain injury. Journal of Neurotrauma, 25(11), 1343–1345.

    PubMed  Google Scholar 

  • Messe, A., Caplain, S., et al. (2010). Diffusion tensor imaging and white matter lesions at the subacute stage in mild traumatic brain injury with persistent neurobehavioral impairment. Human Brain Mapping.

  • Metting, Z., Rodiger, L. A., et al. (2007). Structural and functional neuroimaging in mild-to-moderate head injury. Lancet Neurology, 6(8), 699–710.

    PubMed  Google Scholar 

  • Metting, Z., Rodiger, L. A., et al. (2009). Perfusion computed tomography in the acute phase of mild head injury: regional dysfunction and prognostic value. Annals of Neurology, 66(6), 809–816.

    PubMed  Google Scholar 

  • Miles, L., Grossman, R. I., et al. (2008). Short-term DTI predictors of cognitive dysfunction in mild traumatic brain injury. Brain Injury, 22(2), 115–122.

    PubMed  Google Scholar 

  • Mohammed Sulaiman, A., Denman, N., et al. (2011). Stereology and ultrastructure of chronic phase axonal and cell soma pathology in stretch-injured central nerve fibers. Journal of Neurotrauma, 28(3), 383–400.

    PubMed  Google Scholar 

  • Monnerie, H., Tang-Schomer, M. D., et al. (2010). Dendritic alterations after dynamic axonal stretch injury in vitro. Experimental Neurology, 224(2), 415–423.

    PubMed  CAS  Google Scholar 

  • Morganti-Kossmann, M. C., Satgunaseelan, L., et al. (2007). Modulation of immune response by head injury. Injury, 38(12), 1392–1400.

    PubMed  Google Scholar 

  • Morganti-Kossmann, M. C., Yan, E., et al. (2010). Animal models of traumatic brain injury: is there an optimal model to reproduce human brain injury in the laboratory? Injury, 41(Suppl 1), S10–S13.

    PubMed  Google Scholar 

  • Morino, T., Ogata, T., et al. (2003). Delayed neuronal damage related to microglia proliferation after mild spinal cord compression injury. Neurosciences Research, 46(3), 309–318.

    CAS  Google Scholar 

  • Nilsson, B., & Nordstrom, C. H. (1977). Rate of cerebral energy consumption in concussive head injury in the rat. Journal of Neurosurgery, 47(2), 274–281.

    PubMed  CAS  Google Scholar 

  • Nilsson, P., Hillered, L., et al. (1993). Regional changes in interstitial K+ and Ca2+ levels following cortical compression contusion trauma in rats. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 13(2), 183–192.

    CAS  Google Scholar 

  • Niogi, S. N., & Mukherjee, P. (2010). Diffusion tensor imaging of mild traumatic brain injury. The Journal of Head Trauma Rehabilitation, 25(4), 241–255.

    PubMed  Google Scholar 

  • Niogi, S. N., Mukherjee, P., et al. (2008). Structural dissociation of attentional control and memory in adults with and without mild traumatic brain injury. Brain, 131(Pt 12), 3209–3221.

    PubMed  Google Scholar 

  • Oppenheimer, D. R. (1968). Microscopic lesions in the brain following head injury. Journal of Neurology, Neurosurgery, and Psychiatry, 31(4), 299–306.

    PubMed  CAS  Google Scholar 

  • Ottens, A. K., Kobeissy, F. H., et al. (2006). Neuroproteomics in neurotrauma. Mass Spectrometry Reviews, 25(3), 380–408.

    PubMed  CAS  Google Scholar 

  • Pardini, J. E., Pardini, D. A., et al. (2010). Postconcussive symptoms are associated with compensatory cortical recruitment during a working memory task. Neurosurgery, 67(4), 1020–1027. discussion 1027–1028.

    PubMed  Google Scholar 

  • Parizel, P. M., Ozsarlak, et al. (1998). Imaging findings in diffuse axonal injury after closed head trauma. European Radiology, 8(6), 960–965.

    PubMed  CAS  Google Scholar 

  • Park, E., Bell, J. D., et al. (2009). An analysis of regional microvascular loss and recovery following two grades of fluid percussion trauma: a role for hypoxia-inducible factors in traumatic brain injury. Journal of Cerebral Blood Flow and Metabolism, 29(3), 575–584.

    PubMed  CAS  Google Scholar 

  • Pasco, A., Ter Minassian, A., et al. (2006). Dynamics of cerebral edema and the apparent diffusion coefficient of water changes in patients with severe traumatic brain injury. A prospective MRI study. European Radiology, 16(7), 1501–1508.

    PubMed  Google Scholar 

  • Peerless, S. J., & Rewcastle, N. B. (1967). Shear injuries of the brain. Canadian Medical Association Journal, 96(10), 577–582.

    PubMed  CAS  Google Scholar 

  • Peskind, E. R., Petrie, E. C., et al. (2011). Cerebrocerebellar hypometabolism associated with repetitive blast exposure mild traumatic brain injury in 12 Iraq war Veterans with persistent post-concussive symptoms. NeuroImage, 54(Suppl 1), S76–S82.

    PubMed  Google Scholar 

  • Pettus, E. H., & Povlishock, J. T. (1996). Characterization of a distinct set of intra-axonal ultrastructural changes associated with traumatically induced alteration in axolemmal permeability. Brain Research, 722(1–2), 1–11.

    PubMed  CAS  Google Scholar 

  • Ponsford, J., Cameron, P., et al. (2011). Long-term outcomes after uncomplicated mild traumatic brain injury: a comparison with trauma controls. Journal of Neurotrauma, 28(6), 937–946.

    PubMed  Google Scholar 

  • Povlishock, J. T. (1993). Pathobiology of traumatically induced axonal injury in animals and man. Annals of Emergency Medicine, 22(6), 980–986.

    PubMed  CAS  Google Scholar 

  • Povlishock, J. T., & Pettus, E. H. (1996). Traumatically induced axonal damage: evidence for enduring changes in axolemmal permeability with associated cytoskeletal change. Acta Neurochirurgica. Supplement, 66, 81–86.

    PubMed  CAS  Google Scholar 

  • Povlishock, J. T., Becker, D. P., et al. (1983). Axonal change in minor head injury. Journal of Neuropathology and Experimental Neurology, 42(3), 225–242.

    PubMed  CAS  Google Scholar 

  • Prabhu, S. P. (2011). The role of neuroimaging in sport-related concussion. Clinics in Sports Medicine, 30(1), 103–114. ix.

    PubMed  Google Scholar 

  • Ramlackhansingh, A. F., Brooks, D. J., et al. (2011). Inflammation after trauma: microglial activation and traumatic brain injury. Annals of Neurology.

  • Rink, A., Fung, K. M., et al. (1995). Evidence of apoptotic cell death after experimental traumatic brain injury in the rat. The American Journal of Pathology, 147(6), 1575–1583.

    PubMed  CAS  Google Scholar 

  • Ropper, A. H., & Gorson, K. C. (2007). Clinical practice. Concussion. The New England Journal of Medicine, 356(2), 166–172.

    PubMed  CAS  Google Scholar 

  • Ruttan, L., Martin, K., et al. (2008). Long-term cognitive outcome in moderate to severe traumatic brain injury: a meta-analysis examining timed and untimed tests at 1 and 4.5 or more years after injury. Archives of Physical Medicine and Rehabilitation, 89(12 Suppl), S69–S76.

    PubMed  Google Scholar 

  • Saatman, K. E., Abai, B., et al. (2003). Traumatic axonal injury results in biphasic calpain activation and retrograde transport impairment in mice. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 23(1), 34–42.

    CAS  Google Scholar 

  • Sabet, A. A., Christoforou, E., et al. (2008). Deformation of the human brain induced by mild angular head acceleration. Journal of Biomechanics, 41(2), 307–315.

    PubMed  Google Scholar 

  • Scheid, R., Preul, C., et al. (2003). Diffuse axonal injury associated with chronic traumatic brain injury: evidence from T2*-weighted gradient-echo imaging at 3T. AJNR. American Journal of Neuroradiology, 24(6), 1049–1056.

    PubMed  Google Scholar 

  • Scheid, R., Walther, K., et al. (2006). Cognitive sequelae of diffuse axonal injury. Archives of Neurology, 63(3), 418–424.

    PubMed  Google Scholar 

  • Sigmund, G. A., Tong, K. A., et al. (2007). Multimodality comparison of neuroimaging in pediatric traumatic brain injury. Pediatric Neurology, 36(4), 217–226.

    PubMed  Google Scholar 

  • Singleton, R. H., Zhu, J., et al. (2002). Traumatically induced axotomy adjacent to the soma does not result in acute neuronal death. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 22(3), 791–802.

    CAS  Google Scholar 

  • Slobounov, S. M., Zhang, K., et al. (2010). Functional abnormalities in normally appearing athletes following mild traumatic brain injury: a functional MRI study. Experimental Brain Research, 202(2), 341–354.

    Google Scholar 

  • Slobounov, S. M., Gay, M., et al. (2011). Alteration of brain functional network at rest and in response to YMCA physical stress test in concussed athletes: RsFMRI study. NeuroImage, 55(4), 1716–1727.

    PubMed  CAS  Google Scholar 

  • Smits, M., Hunink, M. G., et al. (2008). Outcome after complicated minor head injury. AJNR. American Journal of Neuroradiology, 29(3), 506–513.

    PubMed  CAS  Google Scholar 

  • Smits, M., Dippel, D. W., et al. (2010). Minor head injury: CT-based strategies for management–a cost-effectiveness analysis. Radiology, 254(2), 532–540.

    PubMed  Google Scholar 

  • Smits, M., Houston, G. C., et al. (2010b). Microstructural brain injury in post-concussion syndrome after minor head injury. Neuroradiology.

  • Spain, A., Daumas, S., et al. (2010). Mild fluid percussion injury in mice produces evolving selective axonal pathology and cognitive deficits relevant to human brain injury. Journal of Neurotrauma, 27(8), 1429–1438.

    PubMed  Google Scholar 

  • Staal, J. A., Dickson, T. C., et al. (2010). Initial calcium release from intracellular stores followed by calcium dysregulation is linked to secondary axotomy following transient axonal stretch injury. Journal of Neurochemistry, 112(5), 1147–1155.

    PubMed  CAS  Google Scholar 

  • Stevens, R. D., Pustavoitau, A., et al. (2008). Brain imaging in intensive care medicine. Seminars in Neurology, 28(5), 631–644.

    PubMed  Google Scholar 

  • Strich, S. J. (1956). Diffuse degeneration of the cerebral white matter in severe dementia following head injury. Journal of Neurology, Neurosurgery, and Psychiatry, 19(3), 163–185.

    PubMed  CAS  Google Scholar 

  • Strong, A. J., & Dardis, R. (2005). Depolarisation phenomena in traumatic and ischaemic brain injury. Advances and Technical Standards in Neurosurgery, 30, 3–49.

    PubMed  CAS  Google Scholar 

  • Sulaiman, A. M., Denman, N., et al. (2011). Stereology and ultrastructure of chronic phase axonal and cell soma pathology in stretch-injured central nerve fibers. Journal of Neurotrauma, 28(3), 383–400.

    Google Scholar 

  • Suskauer, S. J., & Huisman, T. A. (2009). Neuroimaging in pediatric traumatic brain injury: current and future predictors of functional outcome. Developmental Disabilities Research Reviews, 15(2), 117–123.

    PubMed  Google Scholar 

  • Talavage, T. M., Nauman, E., et al. (2010). Functionally-detected cognitive impairment in high school football players without clinically-diagnosed concussion. Journal of Neurotrauma. in press

  • Tang, L., Ge, Y., et al. (2011). Thalamic resting-state functional networks: disruption in patients with mild traumatic brain injury. Radiology.

  • Tang-Schomer, M. D., Patel, A. R., et al. (2010). Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration. The FASEB Journal, 24(5), 1401–1410.

    CAS  Google Scholar 

  • Tavazzi, B., Signoretti, S., et al. (2005). Cerebral oxidative stress and depression of energy metabolism correlate with severity of diffuse brain injury in rats. Neurosurgery, 56(3), 582–589.

    PubMed  Google Scholar 

  • Tomei, G., Spagnoli, D., et al. (1990). Morphology and neurophysiology of focal axonal injury experimentally induced in the guinea pig optic nerve. Acta Neuropathologica, 80(5), 506–513.

    PubMed  CAS  Google Scholar 

  • Tong, K. A., Ashwal, S., et al. (2008). Susceptibility-weighted MR imaging: a review of clinical applications in children. AJNR. American Journal of Neuroradiology, 29(1), 9–17.

    PubMed  CAS  Google Scholar 

  • Topal, N. B., Hakyemez, B., et al. (2008). MR imaging in the detection of diffuse axonal injury with mild traumatic brain injury. Neurological Research, 30(9), 974–978.

    PubMed  Google Scholar 

  • Tournier, J. D., Mori, S., et al. (2011). Diffusion tensor imaging and beyond. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine.

  • Turner, G. R., & Levine, B. (2008). Augmented neural activity during executive control processing following diffuse axonal injury. Neurology, 71(11), 812–818.

    PubMed  Google Scholar 

  • Vagnozzi, R., Signoretti, S., et al. (2010). Assessment of metabolic brain damage and recovery following mild traumatic brain injury: a multicentre, proton magnetic resonance spectroscopic study in concussed patients. Brain, 133(11), 3232–3242.

    Google Scholar 

  • Vajtr, D., Benada, O., et al. (2009). Correlation of ultrastructural changes of endothelial cells and astrocytes occurring during blood brain barrier damage after traumatic brain injury with biochemical markers of BBB leakage and inflammatory response. Physiological Research / Academia Scientiarum Bohemoslovaca, 58(2), 263–268.

    PubMed  CAS  Google Scholar 

  • van de Looij, Y., Mauconduit, F., et al. (2011). Diffusion tensor imaging of diffuse axonal injury in a rat brain trauma model. NMR in Biomedicine.

  • Viano, D. C., Hamberger, A., et al. (2009). Concussion in professional football: animal model of brain injury–part 15. Neurosurgery, 64(6), 1162–1173. discussion 1173.

    PubMed  Google Scholar 

  • Wager-Smith, K., & Markou, A. (2010). Depression: a repair response to stress-induced neuronal microdamage that can grade into a chronic neuroinflammatory condition? Neuroscience & Biobehavioral Reviews.

  • Wang, J. Y., Bakhadirov, K., et al. (2008). Diffusion tensor tractography of traumatic diffuse axonal injury. Archives of Neurology, 65(5), 619–626.

    PubMed  Google Scholar 

  • Wang, J. A., Lin, W., et al. (2009). Membrane trauma and Na+ leak from Nav1.6 channels. American Journal of Physiology. Cell Physiology, 297(4), C823–C834.

    PubMed  CAS  Google Scholar 

  • Wang, J., Hamm, R. J., et al. (2011). Traumatic axonal injury in the optic nerve: evidence for axonal swelling, disconnection, dieback, and reorganization. Journal of Neurotrauma, 28(7), 1185–1198.

    PubMed  CAS  Google Scholar 

  • Warner, M. A., Youn, T. S., et al. (2010). Regionally selective atrophy after traumatic axonal injury. Archives of Neurology, 67(11), 1336–1344.

    PubMed  Google Scholar 

  • Weight, D. G. (1998). Minor head trauma. The Psychiatric Clinics of North America, 21(3), 609–624.

    PubMed  CAS  Google Scholar 

  • Werner, C., & Engelhard, K. (2007). Pathophysiology of traumatic brain injury. British Journal of Anaesthesia, 99(1), 4–9.

    PubMed  CAS  Google Scholar 

  • Westerhausen, R., Moosmann, M., et al. (2010). Identification of attention and cognitive control networks in a parametric auditory fMRI study. Neuropsychologia, 48(7), 2075–2081.

    PubMed  Google Scholar 

  • Whitney, N. P., Eidem, T. M., et al. (2009). Inflammation mediates varying effects in neurogenesis: relevance to the pathogenesis of brain injury and neurodegenerative disorders. Journal of Neurochemistry, 108(6), 1343–1359.

    PubMed  CAS  Google Scholar 

  • Wilde, E. A., Bigler, E. D., et al. (2006). Post-traumatic amnesia predicts long-term cerebral atrophy in traumatic brain injury. Brain Injury, 20(7), 695–699.

    PubMed  Google Scholar 

  • Wilde, E. A., Newsome, M. R., et al. (2011). Brain imaging correlates of verbal working memory in children following traumatic brain injury. International journal of psychophysiology, 82(1), 86–96.

    Google Scholar 

  • Williams, D. H., Levin, H. S., et al. (1990). Mild head injury classification. Neurosurgery, 27(3), 422–428.

    PubMed  CAS  Google Scholar 

  • Wu, T. C., Wilde, E. A., et al. (2010). Longitudinal changes in the corpus callosum following pediatric traumatic brain injury. Developmental Neuroscience.

  • Xie, M., Tobin, J. E., et al. (2010). Rostrocaudal analysis of corpus callosum demyelination and axon damage across disease stages refines diffusion tensor imaging correlations with pathological features. Journal of Neuropathology and Experimental Neurology, 69(7), 704–716.

    PubMed  Google Scholar 

  • Yallampalli, R., Wilde, E. A., Bigler, E. D., McCauley, S. R., Hanten, G., Troyanskaya, M., Hunter, J. V., et al. (2011). Acute white matter differences in the fornix following mild traumatic brain injury using diffusion tensor imaging. Journal of Neuroimaging. doi:10.1111/j.1552-6569.2010.00537.x.

  • Yeo, R. A., Phillips, J. P., et al. (2006). Magnetic resonance spectroscopy detects brain injury and predicts cognitive functioning in children with brain injuries. Journal of Neurotrauma, 23(10), 1427–1435.

    PubMed  Google Scholar 

  • Yeo, R., Gasparovic, C., et al. (2010). A longitudinal proton magnetic resonance spectroscopy study of mild traumatic brain injury. Journal of Neurotrauma.

  • Yoshino, A., Hovda, D. A., et al. (1991). Dynamic changes in local cerebral glucose utilization following cerebral conclusion in rats: evidence of a hyper- and subsequent hypometabolic state. Brain Research, 561(1), 106–119.

    PubMed  CAS  Google Scholar 

  • Zhang, L., Yang, K. H., et al. (2001). Biomechanics of neurotrauma. Neurological Research, 23(2–3), 144–156.

    PubMed  CAS  Google Scholar 

  • Zhu, T., Hu, R., et al. (2011). Quantification of accuracy and precision of multi-center DTI measurements: a diffusion phantom and human brain study. NeuroImage, 56(3), 1398–1411.

    PubMed  Google Scholar 

  • Ziebell, J. M., & Morganti-Kossmann, M. C. (2010). Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics, 7(1), 22–30.

    PubMed  CAS  Google Scholar 

  • Zohar, O., Rubovitch, V., et al. (2011). Behavioral consequences of minimal traumatic brain injury in mice. Acta Neurobiologiae Experimentalis, 71(1), 36–45.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin D. Bigler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bigler, E.D., Maxwell, W.L. Neuropathology of mild traumatic brain injury: relationship to neuroimaging findings. Brain Imaging and Behavior 6, 108–136 (2012). https://doi.org/10.1007/s11682-011-9145-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-011-9145-0

Keywords

Navigation