Nano Express

Nanoscale Research Letters

, Volume 5, Issue 4, pp 761-768

Open Access This content is freely available online to anyone, anywhere at any time.

Structure and Luminescence Properties of Eu3+-Doped Cubic Mesoporous Silica Thin Films

  • Qingshan LuAffiliated withInstitute of Materials Science and Engineering and MOE Laboratory for Magnetism and Magnetic Materials, Lanzhou University
  • , Zhongying WangAffiliated withInstitute of Materials Science and Engineering and MOE Laboratory for Magnetism and Magnetic Materials, Lanzhou University
  • , Peiyu WangAffiliated withInstitute of Materials Science and Engineering and MOE Laboratory for Magnetism and Magnetic Materials, Lanzhou University
  • , Jiangong LiAffiliated withInstitute of Materials Science and Engineering and MOE Laboratory for Magnetism and Magnetic Materials, Lanzhou University Email author 

Abstract

Eu3+ ions-doped cubic mesoporous silica thin films with a thickness of about 205 nm were prepared on silicon and glass substrates using triblock copolymer as a structure-directing agent using sol–gel spin-coating and calcination processes. X-ray diffraction and transmission electron microscopy analysis show that the mesoporous silica thin films have a highly ordered body-centered cubic mesoporous structure. High Eu3+ ion loading and high temperature calcination do not destroy the ordered cubic mesoporous structure of the mesoporous silica thin films. Photoluminescence spectra show two characteristic emission peaks corresponding to the transitions of 5D0-7F1 and 5D0-7F2 of Eu3+ ions located in low symmetry sites in mesoporous silica thin films. With the Eu/Si molar ratio increasing to 3.41%, the luminescence intensity of the Eu3+ ions-doped mesoporous silica thin films increases linearly with increasing Eu3+ concentration.

Keywords

Luminescence Eu3+ doping Cubic mesoporous Thin film Sol–gel