, Volume 4, Issue 7, pp 738-747,
Open Access This content is freely available online to anyone, anywhere at any time.
Date: 23 Apr 2009

A Novel Approach to Molecular Recognition Surface of Magnetic Nanoparticles Based on Host–Guest Effect

Abstract

A novel route has been developed to prepared β-cyclodextrin (β-CD) functionalized magnetic nanoparticles (MNPs). The MNPs were first modified with monotosyl-poly(ethylene glycol) (PEG) silane and then tosyl units were displaced by amino-β-CD through the nucleophilic substitution reaction. The monotosyl-PEG silane was synthesized by modifying a PEG diol to form the corresponding monotosyl-PEG, followed by a reaction with 3-isocyanatopropyltriethoxysilane (IPTS). The success of the synthesis of the monotosyl-PEG silane was confirmed with 1H NMR and Fourier transform infrared (FTIR) spectroscopy. The analysis of FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed the immobilization of β-CD onto MNPs. Transmission electron microscopy (TEM) indicated that the β-CD functionalized MNPs were mostly present as individual nonclustered units in water. The number of β-CD molecules immobilized on each MNP was about 240 according to the thermogravimetric analysis (TGA) results. The as-prepared β-CD functionalized MNPs were used to detect dopamine with the assistance of a magnet.