Skip to main content
Log in

CALPHAD and Phase-Field Modeling: A Successful Liaison

  • Basic and Applied Research
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The connection between CALPHAD models and Phase-Field models is discussed against the background of minimization of the total Gibbs energy of a system. Both methods are based on separation of a multiphase system into individual contributions of the bulk phases, which are described by appropriate models in composition, temperature, and pressure. While the CALPHAD method uses a global minimization of the total Gibbs energy, the Phase-Field method introduces local interactions, interfaces, and diffusion and allows for non-equilibrium situations. Thus, the Phase-Field method is much more general by its concept, however, it can profit a lot if realistic thermodynamic descriptions, as provided by the CALPHAD method, are incorporated. The present paper discusses details of a direct coupling between the Multiphase-Field method and the CALPHAD method. Examples are presented from solidification of technical Mg and Ni base alloys and some problems arising from common practice concerning thermodynamic descriptions in order-disorder systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. 1In an atomistic picture \({\upeta _{\upalpha \upbeta}}\) will be different pairs of phases, however, when used in a Phase-Field calculation on a microscopic scale, this would only be justified for numerical stability reasons.

References

  1. W. A. Oates, H. Wenzel, and T. Mohri, Putting More Physics into Calphad Solution Models, CalPhad-computer Coupling of Phase Diagrams and Thermochemistry, 1996, 20, p 37-45

  2. B.P. Burton, N. Dupin, S.G. Fries, G. Grimvall, A.F. Guillermet, P. Miodownik, W.A. Oates, and V. Vinogred, Using ab initio calculations in the CALPHAD environment, Z. Mettallk (2007) 92:514-525

    Google Scholar 

  3. Elder K. R., Grant M., Modeling Elastic and Plastic Deformations in Nonequilibrium Processing using Phase-Field Crystals. Phys. Rev. E (2004) 70, 051605-1-051605-18

    Article  ADS  Google Scholar 

  4. Goldenfeld N., Athreya B. P., Dantzig J. A., Renormalization Group Approach to Multiscale Simulation of Polycrystalline Materials using the Phase-Field Crystal Model. Phys. Rev. E (2005) 72:020601-1-020601-4

    Article  ADS  Google Scholar 

  5. Tijssens M. G. A., James G. D, Towards an Improved Continuum Theory for Phase Transformations. Mat. Sci. Eng. A (2004) 378:453-458

    Article  Google Scholar 

  6. G. Caginalp, P. Fife, Phase-Field Methods for Interfacial Boundaries. Phys. Rev. B (1986) 33:7792-7794

    Article  ADS  MathSciNet  Google Scholar 

  7. Wheeler A. A., Boettinger W. J., McFadden G. B., Phase-Field Model for Isothermal Phase Transitions in Binary Alloys. Phys. Rev. A (1992) 45 7424-7439

    Article  ADS  Google Scholar 

  8. Kim S. G., Kim W. T., Suzuki T. Phase-field Model for Binary Alloys. Phys. Rev. E (1999) 60, 7186-7197

    Article  ADS  Google Scholar 

  9. U. Grafe, B. Böttger, J. Tiaden, and S. G. Fries, Coupling of Multicomponent Thermodynamic Databases to a Phase-Field Model: Application to Solidification and Solid State Transformations of Superalloys, Scripta Mat., 2000, 42, p 1179-1186

    Google Scholar 

  10. Cha P. -R., Yeon D. -H., Yoon J. -K., A Phase-Field Model for Isothermal Solidification of Multicomponent Alloys. Acta Mat. (2001), 49, 3295-3307

    Article  Google Scholar 

  11. Zhu J. Z., Liu Z. K., Vaithyanathan V., Chen L.Q, Linking Phase-Field Model to CALPHAD: Application to Precipitate Shape Evolution in Ni-base Alloys. Acta Mat. (2002), 46, 401-406

    Google Scholar 

  12. Kobayashi H., Ode M., Kim S. G., Kim W. T., Suzuki T., Phase-Field Model for Solidification of Ternary Alloys Coupled with Thermodynamic Database. Scripta Mat. (2003), 48, 689-694

    Article  Google Scholar 

  13. Qin R. S., Wallach E. R., A Phase-Field Model Coupled with a Thermodynamic Database. Acta Mat., 51, (2003), 6199-6210

    Article  Google Scholar 

  14. Li D. Y., Choudhury S., Liu Z. K., Chen L. -Q., Effect of External Mechanical Constraints on the Phase Diagram of Epitaxial PbZr1−xTixO3 Thin Films – Thermodynamic Calculations and Phase-Field Simulations. Appl. Phys. Lett. (2003) , 83, 1608-1610

    Article  ADS  Google Scholar 

  15. Wu K., Chang Y. A., Wang Y., Simulating Interdiffusion Microstructures in Ni-Al-Cr Diffusion Couples: A Phase-Field Approach Coupled with Calphad Database. Scripta Mat. (2004), 50, 1145-1150

    Article  Google Scholar 

  16. Eiken J., Böttger B., Steinbach I., Multi Phase-Field Approach for Alloy Solidification. Rev. E (2006), 73, 066122-1-066122-9

    Google Scholar 

  17. Steinbach I., Pezzolla F., Nestler B., Seeelberg M., Prieler R., Schmitz G. J., Rezende J. L. L, A Phase-Field Concept for Multiphase Systems. Physica D (1996), 94, 135-147

    Article  MATH  Google Scholar 

  18. Tiaden J., Nestler B., Diepers H. J, Steinbach I. The Multiphase-Field Model with an Integrated Concept for Modeling Solute Diffusion. Physica D (1998), 115, 73-86

    Article  MATH  ADS  Google Scholar 

  19. Steinbach I., Pezzolla F., A Generalized Field Method for Multiphase Transformations using Interface Fields. Physica D (1999), 134, 385-393

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Perepezko J. H., Wilde G., Alloy Metastability During Nucleation-Controlled Reactions. Ber. Bunsenges. Phys. Chem. (1998), 102, 1074-1082

    Google Scholar 

  21. Fries S. G., Sundman B., Development of Multicomponent Thermodynamic Databases for Use in Process Modelling and Simulations. J. Phys. Chem. Sol. 66, (2005) 226-230

    Article  ADS  Google Scholar 

  22. Schmid-Fetzer R., Janz A., Gröbner J., Ohno M., Aspects of Quality Assurance in a Thermodynamic Mg Alloy Database. Anv. Eng. Mater. (2005), 7, 1142-1149

    Article  Google Scholar 

  23. C. E. Campbel, W. J. Boettinger, and U. R. Kattner, Development of Diffusion Mobility Database for Ni-Base Super alloys, Acta Mat., (2002) 50:775-792

    Article  Google Scholar 

  24. Warnken N., Ma D., Mathes M., Steinbach I., Investigation of Eutectic Island Formation in SX Superalloys. Mat. Sci. Eng. A (2005), 413-414, 267-271

    Article  Google Scholar 

  25. http://www.micress.de

  26. Ohno M., Schmid-Fetzer R., Thermodynamic Assessment of Mg-Al-Mn Phase Equilibria, Focusing on Mg-rich Alloys. Z. Metallk. (2005) , 96, 857-869

    Google Scholar 

  27. Böttger B., Eiken J., Ohno M., Klaus G., Fehlbier M., Schmid-Fetzer R., Steinbach I., Bührig-Polazcek A., Controlling Microstructure in Magnesium Alloys: A Combined Thermodynamic, Experimental and Simulation Approach. Adv. Eng. Mat. (2006), 8(4), 241-247

    Article  Google Scholar 

  28. G. Klaus and A. Bührig-Polazcek, Unpublished research at Foundry Institute Aachen, 2005

Download references

Acknowledgments

We like to thank Dr. N. Dupin for providing information for the Ni database and the German research foundation (DFG) for financial support under the integrated project SPP1168 and the collaborative research center SFB370.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Steinbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinbach, I., Böttger, B., Eiken, J. et al. CALPHAD and Phase-Field Modeling: A Successful Liaison. J Phs Eqil and Diff 28, 101–106 (2007). https://doi.org/10.1007/s11669-006-9009-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-006-9009-2

Keywords

Navigation