Skip to main content
Log in

Failure Analysis of a GTD-111 Turbine Blade Using Metallurgical Analysis and Fractography

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

A Correction to this article was published on 18 October 2019

This article has been updated

Abstract

The failure of a gas turbine blade, made of a nickel-base superalloy GTD-111, was studied by metallurgical approaches. The turbine has been operating for around 73,500 h before the blade failure. As a result of the blade failure, the turbine was damaged rigorously. The analysis began with a comprehensive visual examination of the turbine and the blades’ exteriors. Afterward, the examination was continued by fractography of the fracture surfaces, microstructural examinations, and chemical analysis. Fracture was found to occur by micro-cracks spreading on the leading edge as the result of hot corrosion from overheating, together with precipitation of continuous grain boundary carbides. The overheating was resulted from blockage of air channels of the blade as a consequence of improper filtration of inlet compressor air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Change history

  • 18 October 2019

    In the title for Table 5, “region A in Fig. 6b” should read “region A in Fig. 7b.

References

  1. B. Deepanraj, P. Lawrence, G. Sankaranarayanan, Theoretical analysis of gas turbine blade by finite element method. Sci. World 9, 29–33 (2011)

    Article  Google Scholar 

  2. W. Abbasi, S. Rahman, M.J. Metala, NDE Inspections and Lifetime Assessment of Turbine Equipment, in: Power-Gen International (2008). http://m.energy.siemens.com/mx/pool/hq/energy-topics/pdfs/en/service/PowerGen2008_NDEInspections_LifetimeAssessment_turbequip.pdf. Accessed 2008

  3. S. Barella, M. Boniardi, S. Cincera, P. Pellin, X. Degive, S. Gijbels, Failure analysis of a third stage gas turbine blade. Eng. Fail. Anal. 18, 386–393 (2011)

    Article  CAS  Google Scholar 

  4. H. Kim, Study of the fracture of the last stage blade in an aircraft gas turbine. Eng. Fail. Anal. 16, 2318–2324 (2009)

    Article  CAS  Google Scholar 

  5. S. Qu, C.M. Fu, C. Dong, J.F. Tian, Z.F. Zhang, Failure analysis of the 1st stage blades in gas turbine engine. Eng. Fail. Anal. 32, 292–303 (2013)

    Article  CAS  Google Scholar 

  6. N. Vardar, A. Ekerim, Failure analysis of gas turbine blades in a thermal power plant. Eng. Fail. Anal. 14, 743–749 (2007)

    Article  CAS  Google Scholar 

  7. K.-S. Song, S.-G. Kim, D. Jung, Y.-H. Hwang, Analysis of the fracture of a turbine blade on a turbojet engine. Eng. Fail. Anal. 14, 877–883 (2007)

    Article  Google Scholar 

  8. H. Kazempour-Liacy, S. Abouali, M. Akbari-Garakani, Failure analysis of a first stage gas turbine blade. Eng. Fail. Anal. 18, 517–522 (2011)

    Article  CAS  Google Scholar 

  9. G.H. Farrahi, M. Tirehdast, E.M.K. Abad, S. Parsa, M. Motakefpoor, Failure analysis of a gas turbine compressor. Eng. Fail. Anal. 18, 474–484 (2011)

    Article  CAS  Google Scholar 

  10. H. Kim, Crack evaluation of the fourth stage blade in a low-pressure steam turbine. Eng. Fail. Anal. 18, 907–913 (2011)

    Article  Google Scholar 

  11. A.A. Patil, U.M. Shirsat, Study of failure analysis of gas turbine blade. IOSR J. Eng. (2010). ISBN: 2878-8719 PP 37-43

  12. C. Stewart, Tertiary creep damage modeling of a transversely isotropic ni-based superalloy. Electronic Theses and Dissertations. 4105 (2009). https://stars.library.ucf.edu/etd/4105

  13. S.A. Sajjadi, S. Nategh, R.I.L. Guthrie, Study of microstructure and mechanical properties of high performance Ni-base superalloy GTD-111. Mater. Sci. Eng. A 325, 484–489 (2002)

    Article  Google Scholar 

  14. S.A. Sajjadi, S. Nategh, A high temperature deformation mechanism map for the high performance Ni-base superalloy GTD-111. Mater. Sci. Eng. A 307, 158–164 (2001)

    Article  Google Scholar 

  15. J.-C. Chang, Y.-H. Yun, C. Choi, J.-C. Kim, Failure analysis of gas turbine buckets. Eng. Fail. Anal. 10, 559–567 (2003)

    Article  Google Scholar 

  16. S.A. Sajjadi, S.M. Zebarjad, Study of fracture mechanisms of a Ni-base superalloy at different temperatures. J. Achiev. Mater. Manuf. Eng. 18, 227–230 (2006)

    Google Scholar 

  17. S.A. Sajjadi, S.M. Zebarjad, Effect of temperature on tensile fracture mechanisms of a Ni-base superalloy. Arch. Mater. Sci. Eng. 28, 34–40 (2007)

    Google Scholar 

  18. S. Nategh, S.A. Sajjadi, Dislocation network formation during creep in Ni-base superalloy GTD-111. Mater. Sci. Eng. A 339, 103–108 (2003)

    Article  Google Scholar 

  19. S.S. Handa, Precipitation of Carbides in a Ni-based Superalloy (Degree Project for Master of Science with Specialization in Manufacturing Department of Engineering Science, University West, Trollhättan, 2014)

    Google Scholar 

  20. M.J. Donachie, S.J. Donachie, J. Stephen, Superalloys: a technical guide, 2nd edn. (ASM International, 2002), pp. 10–30

  21. J.A. Goebel, F.S. Pettit, Na2SO4-induced accelerated oxidation (hot corrosion) of nickel. Metall. Mater. Trans. B 1, 1943–1954 (1970)

    Article  CAS  Google Scholar 

  22. J.A. Goebel, F.S. Pettit, G.W. Goward, Mechanisms for the hot corrosion of nickel-base alloys. Metall. Mater. Trans. B 4, 261–278 (1973)

    Article  CAS  Google Scholar 

  23. T.S. Sidhu, R.D. Agrawal, S. Prakash, Hot corrosion of some superalloys and role of high-velocity oxy-fuel spray coatings—a review. Surf. Coat. Technol. 198, 441–446 (2005)

    Article  CAS  Google Scholar 

  24. T.S. Sidhu, S. Prakash, R.D. Agrawal, Hot corrosion and performance of nickel-based coatings. Curr. Sci. 90, 41–47 (2006)

  25. N.S. Bornstein, M.A. DeCrescente, H.A. Roth, The relationship between relative oxide ion content of Na2SO4, the presence of liquid metal oxides and sulfidation attack. Metall. Trans. 4, 1799–1810 (1973)

    Article  CAS  Google Scholar 

  26. M.R. Khajavi, M.H. Shariat, Failure of first stage gas turbine blades. Eng. Fail. Anal. 11, 589–597 (2004)

    Article  CAS  Google Scholar 

  27. N. Eliaz, G. Shemesh, R.M. Latanision, Hot corrosion in gas turbine components. Eng. Fail. Anal. 9, 31–43 (2002)

    Article  CAS  Google Scholar 

  28. Z. Huda, Metallurgical failure analysis for a blade failed in a gas-turbine engine of a power plant. Mater. Des. 30, 3121–3125 (2009)

    Article  CAS  Google Scholar 

  29. R.N. Durham, B. Gleeson, D.J. Young, Factors affecting chromium carbide precipitate dissolution during alloy oxidation. Oxid. Met. 50, 139–165 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeil Poursaeidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poursaeidi, E., Aieneravaie, M., Bannazadeh, R. et al. Failure Analysis of a GTD-111 Turbine Blade Using Metallurgical Analysis and Fractography. J Fail. Anal. and Preven. 19, 1358–1369 (2019). https://doi.org/10.1007/s11668-019-00732-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-019-00732-9

Keywords

Navigation