Skip to main content
Log in

Study of Creep–Fatigue Crack Growth Behavior in a Gas Turbine Casing

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

A creep–fatigue crack growth on the outer surfaces of a turbine casing was assessed, and the turbine casing’s overall lifetime was predicted. The crack location, size, and direction were determined using nondestructive tests. Temperature distribution, measured using thermography method, was applied as boundary conditions in FEM simulation. ABAQUS software was utilized for calculating the stress distribution of the casing in accordance with the real cycles of the turbine. Both the creep and the fatigue crack growths were predicted using the ZENCRACK code. The Paris equation was applied in order to estimate the fatigue life, and the time-dependent Paris equation was used to predict the creep life. It was shown that after a certain amount of time has passed, the crack stress intensity factor (K) and time-dependent stress intensity factor (Ct) decrease and stop in reaching the fatigue threshold stress intensity factor (Kth) and creep fracture mechanics parameter (C *t ) values, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. D.E. Brandt, R.R. Wesorick, GE gas turbine design philosophy, GE Power Generation Mark. No. GER-3434D (1994)

  2. J.E. Gill, Uprate options for the MS900A heavy-duty gas turbine, GE Report, GER-3928A, p. 7 (1994)

  3. Technical reports of ‘“Montazer Qa‘em’” power plant, no. 103, Iran (2005)

  4. N.N. Tun, H.S. Yang, J.M. Yu, K.B. Yoon, Creep crack growth analysis using C t -parameter for internal circumferential and external axial surface cracks in a pressurized cylinder. J. Mech. Sci. Technol. 30, 5447–5458 (2016). https://doi.org/10.1007/s12206-016-1113-6

    Article  Google Scholar 

  5. E.M.K. Abad, G.H. Farrahi, M.M.K. Abad, A.A. Zare, S. Parsa, Failure analysis of a gas turbine compressor in a thermal power plant. J. Fail. Anal. Prev. 13, 313–319 (2013). https://doi.org/10.1007/s11668-013-9663-8

    Article  Google Scholar 

  6. T. Delph, Predicting the remaining life of high temperature steel piping. J. Fail. Anal. Prev. 8, 485–486 (2008). https://doi.org/10.1007/s11668-008-9184-z

    Article  Google Scholar 

  7. B.D. Craig, Material failure modes, part I: a brief tutorial on fracture, ductile failure, elastic deformation, creep, and fatigue. J. Fail. Anal. Prev. 5, 9–16 (2005). https://doi.org/10.1361/154770205X70732

    Article  Google Scholar 

  8. S.E.M. Torshizi, A. Jahangiri, Analysis of Fatigue-Creep crack growth in the superheater header of a power plant boilers and estimation of its remaining lifetime. J. Fail. Anal. Prev. 18, 189–198 (2018). https://doi.org/10.1007/s11668-018-0400-1

    Article  Google Scholar 

  9. S. Kruch, P. Prigent, J.L. Chaboche, A fracture mechanics based fatigue-creep-environment crack growth model for high temperature. Int. J. Press. Vessel. Pip. 59, 141–148 (1994)

    Article  Google Scholar 

  10. I.S. Raju, J.C. Newman, Stress-intensity factors for internal and external surface cracks in cylindrical vessels. J. Press. Vessel Technol. 104, 293–298 (1982)

    Article  Google Scholar 

  11. C. Kanchanomai, W. Limtrakarn, Y. Mutoh, Fatigue crack growth behaviour in Sn–Pb eutectic solder/copper joint under mode I loading. Mech. Mater. 37, 1166–1174 (2005)

    Article  Google Scholar 

  12. D. Poquillon, M.-T. Cabrillat, A. Pineau, Local approach: numerical simulations of creep and creep–fatigue crack initiation and crack growth in 316L SPH austenitic stainless steel. Le J. Phys. IV. 6, C6–C421 (1996)

    Google Scholar 

  13. M. Salari, A.R. Shahani, H.M. Kashani, H. Moayeri Kashani, Fatigue crack growth analysis of a reinforced cylindrical shell under random loading. Fatigue Fract. Eng. Mater. Struct. 37, 1197–1210 (2014). https://doi.org/10.1111/ffe.12196

    Article  Google Scholar 

  14. T.H. Hyde, W. Sun, A.A. Becker, J.A. Williams, Creep properties and failure assessment of new and fully repaired P91 pipe welds at 923 K. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 218, 211–222 (2004)

    Article  CAS  Google Scholar 

  15. K.M. Nikbin, M. Yatomi, K. Wasmer, G.A. Webster, Probabilistic analysis of creep crack initiation and growth in pipe components. Int. J. Press. Vessel. Pip. 80, 585–595 (2003). https://doi.org/10.1016/S0308-0161(03)00111-X

    Article  CAS  Google Scholar 

  16. M. Tan, N.J.C. Celard, K.M. Nikbin, G.A. Webster, Comparison of creep crack initiation and growth in four steels tested in HIDA. Int. J. Press. Vessel. Pip. 78, 737–747 (2001)

    Article  Google Scholar 

  17. K. Wasmer, K.M. Nikbin, G.A. Webster, A sensitivity study of creep crack growth in pipes, in Piping Conference, American Society of Mechanical Engineers (Press, Vessel, 2002), pp. 17–24

  18. L.K. Bhagi, V. Rastogi, P. Gupta, Study of corrosive fatigue and life enhancement of low pressure steam turbine blade using friction dampers. J. Mech. Sci. Technol. 31, 17–27 (2017). https://doi.org/10.1007/s12206-016-1203-5

    Article  Google Scholar 

  19. M.P. Boyce, Gas Turbine Engineering Handbook (Elsevier, Amsterdam, 2011)

    Google Scholar 

  20. www.matweb.com (2014)

  21. https://www.matbase.com/material-categories/metals/ferrous-metals/cast-iron/ material-pro perties-of-ggg-40-din-1693-1-2-cast-iron-grade.html#properties (2014)

  22. E. Poursaeidi, A. Kavandi, K. Vaezi, M.R. Kalbasi, M.R. Mohammadi Arhani, Fatigue crack growth prediction in a gas turbine casing. Eng. Fail. Anal. 44, 371–381 (2014). https://doi.org/10.1016/j.engfailanal.2014.05.010

    Article  Google Scholar 

  23. M. Janssen, J. Zuidema, R.J.H. Wanhill, Fracture mechanics VSSD (2006)

  24. F.V. Antunes, R. Branco, P.A. Prates, L. Borrego, Fatigue crack growth modelling based on CTOD for the 7050-T6 alloy. Fatigue Fract. Eng. Mater. Struct. (2017). https://doi.org/10.1111/ffe.12582

    Article  Google Scholar 

  25. Zentech Inc, ZENCRACK user manual, Zentech Incorporated (1999)

  26. U.M. ABAQUS, Version 5.8, Hibbitt, Karlsson & Sorensen, Inc., USA (1998)

  27. H.-Y. Lee, S.-H. Kim, J.-H. Lee, B.-H. Kim, Creep–fatigue crack growth behaviour of a structure with crack like defects at the welds. J. Mech. Sci. Technol. 20, 2136–2146 (2006)

    Article  Google Scholar 

  28. K.B. Yoon, A. Saxena, D.L. McDowell, Influence of crack-tip cyclic plasticity on creep–fatigue crack growth, in Fracture Mechanics Twenty-Second Symposium, pp. 367–392 (1990)

  29. A. Saxena, Creep crack growth under non-steady-state conditions, in Fracture Mechanics Seventeenth Volume, ASTM International (1986)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeil Poursaeidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poursaeidi, E., Kavandi, A. & Torkashvand, K. Study of Creep–Fatigue Crack Growth Behavior in a Gas Turbine Casing. J Fail. Anal. and Preven. 18, 1607–1615 (2018). https://doi.org/10.1007/s11668-018-0559-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-018-0559-5

Keywords

Navigation