Skip to main content
Log in

A Comparative Study of Various Methods of Bearing Faults Diagnosis Using the Case Western Reserve University Data

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Bearing is probably one of the most critical components of rotating machinery. They are employed to guide and support the shafts in rotating machinery. Therefore, any fault in the bearings can lead to losses on the level of production and equipments as well as potentially unsafe. For these reasons, the bearing fault diagnosis has received considerable attention from the research and engineering communities in recent years. The purpose of this study is to review the vibration analysis techniques and to explore their capabilities, advantages, and disadvantage in monitoring rolling element bearings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. J. Faiz, M. Ojaghi, Different indexes for eccentricity faults diagnosis in three-phase squirrel-cage induction motors: a review. Mechatronics 19, 2–13 (2009)

    Article  Google Scholar 

  2. D. Wang, W.T. Peter, K.L. Tsui, An enhanced Kurtogram method for fault diagnosis of rolling element bearings. Mech. Syst. Signal Process 35, 199–2013 (2013)

    Article  Google Scholar 

  3. J. Zarei, M.A. Tajeddine, H.R. Karimi, Vibration analysis for bearing fault detection and classification using an intelligent filter. Mechatronics 24, 151–157 (2014)

    Article  Google Scholar 

  4. N. Tandon, A. Parey, Condition monitoring of rotary machines. Ser. Adv. Manuf. 5, 151–157 (2006)

    Google Scholar 

  5. S. Nandi, H.A. Toliyat, X. Li, Condition monitoring and fault diagnosis of electrical motors—a review. IEEE Trans. Energy Convers. 4, 719–729 (2005)

    Article  Google Scholar 

  6. L. Márton, F. Van der Linden, Temperature dependent friction estimation: application to lubricant health monitoring. Mechatronics 22, 1078–1084 (2012)

    Article  Google Scholar 

  7. A.W. Lees, N. Tandon, A. Choudhury, A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings. Tribol. Int. 32, 469–480 (1999)

    Article  Google Scholar 

  8. M.S. Safizadeh, S.K. Latifi, Using multi-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell. Inf. Fusion 18, 1–8 (2014)

    Article  Google Scholar 

  9. N. Mehala, R. Dahiya, Condition monitoring and fault diagnosis of induction motor using motor current signature analysis. PhD Thesis, National Institute of Technology, Kurushetra, October, 2010

  10. A. Boudiaf, S. Bouhouche, A.K. Moussaoui, S. Taleb, An effective method for bearing faults diagnosis. In: IEEE Proceeding of 3rd International Conference on Control Engineering & Information Technology, pp. 1–6, 2015

  11. Z. Zhang, Y. Wang, K. Wang, Fault diagnosis and prognosis using wavelet packet decomposition, Fourier transform and artificial neural network. J. Int. Manuf. 24, 1213–1227 (2013)

    Article  Google Scholar 

  12. V.K. Rai, A.R. Mohanty, Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform. Mech. Syst. Signal Process. 6, 2607–2615 (2007)

    Article  Google Scholar 

  13. J. Ma, J. Wu, X. Wang, Y. Fan, T. Leng, A fault detection method of rolling bearing based on wavelet packet-cepstrum. Res. J. Appl. Sci. Eng. Technol. 5, 3402–3406 (2013)

    Google Scholar 

  14. A. Verma, S. Srivastava, Review on condition monitoring techniques oil analysis, thermography and vibration analysis. Int. J. Enhanc. Res. Sci. Technol. Eng. 3, 18–25 (2014)

    Google Scholar 

  15. J. Lee, H. Kim, Development of enhanced Wigner–Ville distribution function. Mech. Syst. Signal Process 15, 367–398 (2001)

    Article  Google Scholar 

  16. M.S. Safizadeh, A.A. Lakis, M. Thomas, Time-frequency algorithms and their applications. Int. J. Comput. Appl. 7, 167–186 (2000)

    Google Scholar 

  17. M. Unal, M. Onat, M. Demetgul, H. Kucuk, Fault diagnosis of rolling bearings using a genetic algorithm optimized neural network. Measurement 58, 187–196 (2015)

    Article  Google Scholar 

  18. H. Bendjama, S. Bouhouche, A.K. Moussaoui, Wavelet transform for bearing faults diagnosis. Proceedings of conference of advances in control engineering. Conf. Adv. Control Eng. 14, 85–88 (2013)

    Google Scholar 

  19. W.T. Peter, Y.H. Peng, R. Yam, Wavelet analysis and envelope detection for rolling element bearing fault diagnosis-their affectivities and flexibilities. J. Vib. Acoust. 123, 303–310 (2001)

    Article  Google Scholar 

  20. Z. Peng, F. Chu, Y. He, Vibration signal analysis and feature extraction based on reassigned wavelet scalogram. J. Vib. Acoust. 25, 1087–1100 (2002)

    Google Scholar 

  21. Y. Yu, D. Yu, J.A. Cheng, Roller bearing fault diagnosis method based on EMD energy entropy and ANN. J. Vib. Acoust. 294, 269–277 (2006)

    Google Scholar 

  22. Z.K. Penga, P. Tsea, F.L. Chub, A comparison study of improved Hilbert-Huang transform and wavelet transform application to fault diagnosis for rolling bearing. Mech. Syst. Signal Process 19, 974–988 (2005)

    Article  Google Scholar 

  23. K.A. Loparo, Bearings vibration data set. The Case Western Reserve University Bearing Data Center. http://www.eecs.cwru.edu/laboratory/bearing/download.htm

  24. R.B. Randall, Detection and diagnosis of incipient bearing failure in helicopter gearboxes. Eng. Fail. Anal. 2, 177–190 (2004)

    Article  Google Scholar 

  25. V. Saxena, N. Chowdhury, S. Devendiran, Assessment of gearbox fault detection using vibration signal analysis and acoustic emission technique. J. Mech. Civ. Eng. 7, 52–60 (2013)

    Google Scholar 

  26. A. Aherwar, M. Saifullah Khalid, Vibration analysis techniques for gearbox diagnostic: a review. Int. J. Adv. Eng. Technol. l3, 04–12 (2012)

    Google Scholar 

  27. T. Karacay, N. Akturk, Experimental diagnostics of ball bearings using statistical and spectral methods. Tribol. Int. 42, 836–843 (2009)

    Article  Google Scholar 

  28. B. Liang, S.D. Iwnicki, Y. Zhao, 2013, Application of power spectrum, cepstrum, higher order spectrum and neural network analyses for induction motor fault diagnosis. Mech. Syst. Signal Process 39, 342–360 (2013)

    Article  Google Scholar 

  29. M. El Morsy, G. Achtenová, Vehicle gearbox fault diagnosis based on cepstrum analysis. Int J Mech Aerosp Indus Mechatron Manuf Eng 6, 1568–1574 (2014)

    Google Scholar 

  30. A. Djebala, N. Ouelaa, C. Benchaabane, D.F. Laefer, Application of the wavelet multi-resolution analysis and Hilbert transform for the prediction of gear tooth defects. Meccanica 47, 1601–1612 (2012)

    Article  Google Scholar 

  31. M. Feldman, Hilbert transform in vibration analysis. Mech. Syst. Signal Process. 25, 735–802 (2011)

    Article  Google Scholar 

  32. R.B. Randall, J. Antoni, Rolling element bearing diagnostics. Mech. Syst. Signal Process. 25, 485–520 (2011)

    Article  Google Scholar 

  33. J. Slavic, A. Brkovic, M.R. Bolteza, Typical bearing-fault rating using force measurements-application to real data. J. Vib. Cont. 17, 2164–2174 (2012)

    Article  Google Scholar 

  34. M. Pan, W. Tsao, Using appropriate IMFs for envelope analysis in multiple fault diagnosis of ball bearings. Int. J. Mech. Sci. 69, 114–124 (2013)

    Article  Google Scholar 

  35. Q. Sun, Y. Tang, Singularity analysis using continuous wavelet transform for bearing fault diagnosis. Mech. Syst. Signal Process. 16, 1025–1041 (2002)

    Article  Google Scholar 

  36. P. Konar, P. Chattopadhyay, Multi-class fault diagnosis of induction motor using Hilbert and Wavelet Transform. Appl. Soft Comput. 30, 341–345 (2015)

    Article  Google Scholar 

  37. A. Djebala, N. Ouelaa, N. Hamzaoui, Detection of rolling bearing defects using discrete wavelet analysis. Meccanica 43, 339–348 (2008)

    Article  Google Scholar 

  38. M. Barghi Latran, A. Teke, A novel wavelet transform based voltage sag/swell detection algorithm. Electr Power Energy Syst 71, 131–135 (2015)

    Article  Google Scholar 

  39. R. Yan, R.X. Gao, X. Chen, Wavelets for fault diagnosis of rotary machines: a review with applications. J Signal Proc 96, 1–15 (2014)

    Article  Google Scholar 

  40. S. Khanam, N. Tandon, J.K. Dutt, Fault size estimation in the outer race of ball bearing using discrete wavelet transform of the vibration signal. Proc Technol 14, 12–19 (2014)

    Article  Google Scholar 

  41. X. Wang, C. Liu, F. Bi, X. Bi, K. Shao, Fault diagnosis of diesel engine based on adaptive wavelet packets and EEMD-fractal dimension. Mech. Syst. Signal Process. 41, 581–597 (2013)

    Article  Google Scholar 

  42. B. Liu, Selection of wavelet packet basis for rotating machinery fault diagnosis. J. Vib. Acoust. 284, 567–582 (2005)

    Google Scholar 

  43. C. Castejon, M.J. Gomez, J.C. Garcia-Prada, A.J. Ordonez, H. Rubio, Automatic selection of the WPT decomposition level for condition monitoring of rotor elements based on the sensitivity analysis of the wavelet energy. Mech. Int. J. Acous. Vib. 20, 95–100 (2015)

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Case Western Reserve University for providing free access to the bearing vibration experimental data from their Web site.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Boudiaf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boudiaf, A., Moussaoui, A., Dahane, A. et al. A Comparative Study of Various Methods of Bearing Faults Diagnosis Using the Case Western Reserve University Data. J Fail. Anal. and Preven. 16, 271–284 (2016). https://doi.org/10.1007/s11668-016-0080-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-016-0080-7

Keywords

Navigation