Skip to main content
Log in

Improvements in Microstructure and Wear Resistance of Plasma-Sprayed Fe-Based Amorphous Coating by Laser-Remelting

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Amorphous coating technology is an attractive way of taking advantage of the superior properties of amorphous alloys for structural applications. However, the limited bonds between splats within the plasma-sprayed coatings result in a typically lamellar and porous coating structure. To overcome these limitations, the as-sprayed coating was treated by a laser-remelting process. The microstructure and phase composition of two coatings were analyzed using scanning electron microscopy with energy-dispersive spectroscopy, transmission electron microscopy, and x-ray diffraction. The wear resistance of the plasma-sprayed coating and laser-remelted coating was studied comparatively using a pin-on-disc wear test under dry friction conditions. It was revealed that the laser-remelted coating exhibited better wear resistance because of its defect-free and amorphous-nanocrystalline composited structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.M. Trexler and N.N. Thadhani, Mechanical Properties of Bulk Metallic Glasses, Prog. Mater. Sci., 2010, 55, p 759-839

    Article  Google Scholar 

  2. W.H. Wang, C. Dong, and C.H. Shek, Bulk Metallic Glasses, Mater. Sci. Eng. R: Rep., 2004, 44, p 45-90

    Article  Google Scholar 

  3. W.L. Johnson, Bulk Glass-Forming Metallic Alloys: Science and Technology, MRS Bull., 1999, 24, p 42-56

    Article  Google Scholar 

  4. J. Schroers, Processing of Bulk Metallic Glass, Adv. Mater., 2010, 22, p 1566-1597

    Article  Google Scholar 

  5. Y. He, R.B. Schwarz, and J.I. Archuleta, Bulk Glass Formation in the Pd-Ni-P System, Appl. Phys. Lett., 1996, 69, p P1861-P1863

    Article  Google Scholar 

  6. Y.J. Sun, D.D. Qu, Y.J. Huang, K.D. Liss, X.S. Wei, D.W. Xing, and J. Shen, Zr-Cu-Ni-Al Bulk Metallic Glasses with Superior Glass-Forming Ability, Acta Mater., 2009, 57, p 1290-1299

    Article  Google Scholar 

  7. Q.S. Zhang, W. Zhang, and A. Inoue, Ni-free Zr-Fe-Al-Cu Bulk Metallic Glasses with High Glass-Forming Ability, Scr. Mater., 2009, 61, p 241-244

    Article  Google Scholar 

  8. B. Huang, H.Y. Bai, and W.H. Wang, Unique Properties of CuZrAl Bulk Metallic Glasses Induced by Microalloying, J. Appl. Phys., 2011, 110, p 123522

    Article  Google Scholar 

  9. P. Jia, H. Guo, Y. Li, J. Xu, and E. Ma, A new Cu-Hf-Al Ternary Bulk Metallic Glass with High Glass-Forming Ability and Ductility, Scr. Mater., 2006, 54, p 2165-2168

    Article  Google Scholar 

  10. Q. Zheng, H. Ma, E. Ma, and J. Xu, Mg-Cu-(Y, Nd) Pseudo-Ternary Bulk Metallic Glasses: The Effects of Nd on Glass-Forming Ability and Plasticity, Scr. Mater., 2006, 55, p 541-544

    Article  Google Scholar 

  11. E.S. Park, H.G. Kang, W.T. Kin, and D.H. Kim, Effect of Ag Addition on the Glass-Forming Ability of Mg-Cu-Y Metallic Glass Alloys, J. Non-Cryst. Solids, 2001, 279, p 154-160

    Article  Google Scholar 

  12. S.J. Pang, T. Zhang, K. Asami, and A. Inoue, Synthesis of Fe-Cr-Mo-C-B-P Bulk Metallic Glasses with High Corrosion Resistance, Acta Mater., 2002, 50, p 489-497

    Article  Google Scholar 

  13. Q. Li, J. Li, P. Gong, K. Yao, J. Gao, and H. Li, Formation of Bulk Magnetic Ternary Fe80P13C7 Glassy Alloy, Intermetallics, 2012, 26, p 62-65

    Article  Google Scholar 

  14. J.H. Na, M.D. Demetriou, M. Floyd, A. Hoff, G.R. Garrett, and W.L. Johnson, Compositional Landscape for Glass Formation in Metal Alloys, PNAS, 2014, 111, p 9031-9036

    Article  Google Scholar 

  15. Y. Zeng, N. Nishiyama, and A. Inoue, Formation of a Ni-Based Glassy Alloy in Centimeter Scale, Mater. Trans., 2007, 48, p 1355-1358

    Article  Google Scholar 

  16. J. Wang, R. Li, R. Xiao, and T. Xu, Compressibility and Hardness of Co-Based Bulk Metallic Glass: A Combined Experimental and Density Functional Theory Study, Appl. Phys. Lett., 2011, 99, p 151911

    Article  Google Scholar 

  17. Q. Man, H. Sun, Y. Dong, B. Shen, H. Kimura, A. Makino, and A. Inoue, Enhancement of Glass-Forming Ability of CoFeBSiNb Bulk Glassy Alloys with Excellent Soft-Magnetic Properties and Superhigh Strength, Intermetallics, 2010, 18, p 1876-1879

    Article  Google Scholar 

  18. T. Zhang and A. Inour, Bulk Glassy Alloys with Low Liquidus Temperature in Pt-Cu-P System, Mater. Trans., 2003, 44, p 1143-1146

    Article  Google Scholar 

  19. W. Zhang, H. Guo, M.W. Chen, Y. Saotome, C.L. Qin, and A. Inoue, New Au-Based Bulk Glassy Alloys with Ultralow Glass Transition Temperature, Scr. Mater., 2009, 61, p 744-747

    Article  Google Scholar 

  20. M.I. Ojovan and W.B.E. Lee, Connectivity and Glass Transition in Disordered Oxide Systems, J. Non-Cryst. Solids, 2010, 356(44-49), p 2534-2540

    Article  Google Scholar 

  21. C. Suryanarayana, Non-equilibrium Processing of Materials, Pergamon, New York, 1999

    Google Scholar 

  22. K. Miyoshi and D.H. Buckley, Microstructure and Surface Chemistry of Amorphous Alloys Important to Their Friction and Wear Behavior, Wear, 1986, 110, p 295-313

    Article  Google Scholar 

  23. Kishore, U. Sudarsan, N. Chandran, and K. Chattopadhyay, On the Wear Mechanism of Iron and Nickel Based Transition Metal-Metalloid Metallic Glasses, Acta Metall., 1987, 35, p 1463-1473

    Article  Google Scholar 

  24. C.A. Schuh, T.C. Hufnagel, and U. Ramamurty, Mechanical Behavior of Amorphous Alloys, Acta Mater., 2007, 55, p 4067-4109

    Article  Google Scholar 

  25. E. Axinte, Metallic Glasses from “Alchemy” to Pure Science: Present and Future of Design, Processing and Applications of Glassy Metals, Mater. Des., 2012, 35, p 518-556

    Article  Google Scholar 

  26. F. Abdeljawad, M. Fontus, and M. Haataja, Ductility of Bulk Metallic Glass Composites: Microstructural Effects, Appl. Phys. Lett., 2011, 98, p 031909-1-3

    Article  Google Scholar 

  27. J.B. Cheng, X.B. Liang, Z.H. Wang, and B.S. Xu, Dry Sliding Friction and Wear Properties of Metallic Glass Coating and Martensite Stainless Coating, Tribol. Int., 2013, 60, p 140-146

    Article  Google Scholar 

  28. H. Miura, S. Isa, and K. Omuro, Production of Amorphous Iron-Nickel Based Alloys by Flame-Spray Quenching and Coatings on Metal Substrates, Mater. Trans. Jim., 1984, 25, p 284-291

    Article  Google Scholar 

  29. V. Varadaraajan, R.K. Guduru, and P.S. Mohanty, Synthesis and Microstructural Evolution of Amorphous/Nanocrystalline Steel Coatings by Different Thermal Spray Processes, J. Therm. Spray Technol., 2013, 22, p 452-462

    Article  Google Scholar 

  30. B. Movahedi, M.H. Enayati, and C.C. Wong, Structural and Thermal Behavior of Fe-Cr-Mo-P-B-C-Si Amorphous and Nanocrystalline HVOF Coatings, J. Therm. Spray Technol., 2010, 19, p 1093-1099

    Article  Google Scholar 

  31. S. Yugeswaran and A. Kobayashi, Metallic Glass Coatings Fabricated by Gas Tunnel Type Plasma Spraying, Vacuum, 2014, 11, p 177-182

    Article  Google Scholar 

  32. A. Kobayashi, S. Yano, H. Kimura, and A. Inoue, Fe-Based Metallic Glass Coatings Produced by Smart Plasma Spraying Process, Mater. Sci. Eng. B, 2008, 148, p 110-113

    Article  Google Scholar 

  33. D.T.A. Matthews, V. Ocelík, D. Branagan, and J.Th.M. de Hosson, Laser Engineered Surfaces from Glass Forming Alloy Powder Precursors: Microstructure and Wear, Surf. Coat. Technol., 2009, 2039, p 1833-1843

    Article  Google Scholar 

  34. D.T.A. Matthews, V. Ocelík, and J.Th.M. de Hosson, Tribological and Mechanical Properties of High Power Laser Surface-Treated Metallic Glasses, Mater. Sci. Eng. A, 2007, 471, p 155-164

    Article  Google Scholar 

  35. S. Katakam, J.Y. Hwang, S. Paital, R. Banerjee, H. Vora, and N.B. Dahotre, In Situ Laser Synthesis of Fe-Based Amorphous Matrix Composite Coating on Structural Steel, Metall. Mater. Trans. A, 2012, 43, p 4957-4966

    Article  Google Scholar 

  36. E. Foroozmehr and R. Kovacevic, Thermo-Kinetic Modeling of Phase Transformation in Laser Powder Deposition, Metall. Mater. Trans. A, 2009, 40, p 1935-1943

    Article  Google Scholar 

  37. S. Katakam, S. Santhanakrishnan, and N.B. Dahotre, Fe-Based Amorphous Coatings on AISI, 4130 Structural Steel for Corrosion Resistance, Process. Technol., 2012, 64, p 1247-1259

    Google Scholar 

  38. W.W. Liu, X. Lin, G.L. Yang, H.O. Yang, W.D. Huang, and J.F. Li, Crystallization Behavior of Amorphous Heat Affected Zone of Zr55Al10Ni5Cu30 Alloy by Pulse Laser Remelting, Chin. J. Lasers, 2010, 37, p 2104-2111

    Article  Google Scholar 

  39. D.J. Branagan, M. Breitsameter, B.E. Meacham, and V. Belashchenko, High Performance Nanoscale Composite Coatings for Boiler Applications, J. Therm. Spray Technol., 2005, 14, p 196-204

    Article  Google Scholar 

  40. X.B. Zhao and Z.H. Ye, Microstructure and Wear Resistance of Molybdenum Based Amorphous Nanocrystalline Alloy Coating Fabricated by Atmospheric Plasma Spraying, Surf. Coat. Technol., 2013, 228, p 266-270

    Article  Google Scholar 

  41. Z.S. Li, Z.D. Liu, Y.T. Wang, and Y. Wang, Fe-Based Amorphous Composite Coating Prepared by Plasma Remelting, Adv. Mater. Sci. Eng., 2015, 2015, p 1-6

    Google Scholar 

  42. A. Edrisy, T. Perry, Y.T. Cheng, and A.T. Alpas, Wear of Thermal Spray Deposited Low Carbon Steel Coatings on Aluminum Alloys, Wear, 2001, 251, p 1023-1033

    Article  Google Scholar 

  43. A. Edrisy, T. Perry, and A.T. Alpas, Wear Mechanism Maps for Thermal-Spray Steel Coatings, Metall. Mater. Trans. A, 2005, 36A, p 2737-2750

    Article  Google Scholar 

  44. G. Bolelli, B. Bonferroni, J. Laurila, L. Lusvarghi, A. Milanti, K. Niemi, and P. Vuoristo, Micromechanical Properties and Sliding Wear Behaviour of HVOF-Sprayed Fe-Based Alloy Coatings, Wear, 2012, 276-277, p 29-47

    Article  Google Scholar 

  45. S.H. Yoon, J.H. Kim, B.D. Kim, and C.H. Lee, Tribological Behavior of B4C Reinforced Fe-Based Bulk Metallic Glass Composite Coating, Surf. Coat. Technol., 2010, 205, p 1962-1968

    Article  Google Scholar 

  46. T. Fu, F.X. Ye, H.H. Wei, and L. Cui, Laser Surface Remelting of Fe-Based Alloy Coating Deposited by APS, Rare Metal Mater. Eng., 2012, 41(S1), p 407-413

    Google Scholar 

  47. J.C. Huang, J.P. Chu, and J.S.C. Jang, Recent Progress in Metallic Glasses in Taiwan, Intermetallics, 2009, 17, p 973-987

    Article  Google Scholar 

  48. D.J. Branagan, W.D. Swank, D.C. Haggard, and J.R. Fincke, Wear-Resistant Amorphous and Nanocomposite Steel Coatings, Metall. Mater. Trans. A, 2001, 32, p 2615-2621

    Article  Google Scholar 

  49. J.R. Weertman, D. Farkas, K. Hemker, H. Kung, M. Mayo, R. Mitra, and H. Van Swygenhoven, Structure and Mechanical Behavior of Bulk Nanocrystalline Materials, Mater. Res. Soc. Bull., 1999, 24, p 44-50

    Article  Google Scholar 

  50. H. Yoshioka, K. Asami, A. Kawashima, and K. Hashimoto, Laser-Processed Corrosion-Resistant Amorphous NiCrPB Surface Alloys on a Mild Steel, Corros. Sci., 1987, 27, p 981-995

    Article  Google Scholar 

  51. P.L. Zhang, H. Yan, C.W. Yao, Z.G. Li, Z.S. Yu, and P.Q. Xu, Synthesis of Fe-Ni-B-Si-Nb Amorphous and Crystalline Composite Coatings by Lasercladding and Remelting, Surf. Coat. Technol., 2011, 206, p 1229-1236

    Article  Google Scholar 

  52. P. Gargarella, A. Almeida, R. Vilar, and C.S. Kiminami, Formation of Fe-Based Glassy Matrix Composite Coatings by Laser Processing, Surf. Coat. Technol., 2014, 240, p 336-343

    Article  Google Scholar 

  53. A. Inoue, Bulk Amorphous and Nanocrystalline Alloys with High Functional Properties, Mater. Sci. Eng. A, 2001, 304, p 1-10

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of Shaanxi Province of China (2016JM5058, 2016JM5059), Natural Nature Science Foundation of China (51301022) and The Special Fund for Basic Scientific Research of Central Colleges, Chang’an University (310831161005, 310831161018, 310831163401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoping Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Chen, H., Wang, G. et al. Improvements in Microstructure and Wear Resistance of Plasma-Sprayed Fe-Based Amorphous Coating by Laser-Remelting. J Therm Spray Tech 26, 778–786 (2017). https://doi.org/10.1007/s11666-017-0546-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-017-0546-5

Keywords

Navigation