Skip to main content
Log in

Characterizing Suspension Plasma Spray Coating Formation Dynamics through Curvature Measurements

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Suspension plasma spraying (SPS) enables the production of variety of microstructures with unique mechanical and thermal properties. In SPS, a liquid carrier (ethanol/water) is used to transport the sub-micrometric feedstock into the plasma jet. Considering complex deposition dynamics of SPS technique, there is a need to better understand the relationships among spray conditions, ensuing particle behavior, deposition stress evolution and resultant properties. In this study, submicron yttria-stabilized zirconia particles suspended in ethanol were sprayed using a cascaded arc plasma torch. The stresses generated during the deposition of the layers (termed evolving stress) were monitored via the change in curvature of the substrate measured using an in situ measurement apparatus. Depending on the deposition conditions, coating microstructures ranged from feathery porous to dense/cracked deposits. The evolving stresses and modulus were correlated with the observed microstructures and visualized via process maps. Post-deposition bi-layer curvature measurement via low temperature thermal cycling was carried out to quantify the thermo-elastic response of different coatings. Lastly, preliminary data on furnace cycle durability of different coating microstructures were evaluated. This integrated study involving in situ diagnostics and ex situ characterization along with process maps provides a framework to describe coating formation mechanisms, process parametrics and microstructure description.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. P. Fauchais and G. Montavon, Latest Developments in Suspension and Liquid Precursor Thermal Spraying, J. Therm. Spray Technol., 2010, 19(1), p 226-239

    Article  Google Scholar 

  2. L. Pawlowski, Finely Grained Nanometric and Submicrometric Coatings by Thermal Spraying: A Review, Surf. Coat. Technol., 2008, 202(18), p 4318-4328

    Article  Google Scholar 

  3. M. Vardelle, A. Vardelle, P. Fauchais, K.I. Li, B. Dussoubs, and N.J. Themelis, Controlling Particle Injection in Plasma Spraying, J. Therm. Spray Technol., 2001, 10(2), p 267-284

    Article  Google Scholar 

  4. J. Fazilleau, C. Delbos, V. Rat, J.F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying Part 1: Suspension Injection and Behavior, Plasma. Chem. Plasma. Phy., 2006, 26(4), p 371-391

    Article  Google Scholar 

  5. R. Vaßen, Z. Yi, H. Kaßner, and D. Stöver, Suspension Plasma Spraying of TiO2 for the Manufacture of Photovoltaic Cells, Surf. Coat. Technol., 2009, 203(15), p 2146-2149

    Article  Google Scholar 

  6. L. Łatka, L. Pawlowski, D. Chicot, C. Pierlot, and F. Petit, Mechanical Properties of Suspension Plasma Sprayed Hydroxyapatite Coatings Submitted to Simulated Body Fluid, Surf. Coat. Technol., 2010, 205(4), p 954-960

    Article  Google Scholar 

  7. O. Tingaud, P. Bertrand, and G. Bertrand, Microstructure and Tribological Behavior of Suspension Plasma Sprayed Al2O3 and Al2O3–YSZ Composite Coatings, Surf. Coat. Technol., 2010, 205(4), p 1004-1008

    Article  Google Scholar 

  8. N. Curry, Z.L. Tang, N. Markocsan, and P. Nylen, Influence of Bond Coat Surface Roughness on the Structure of Axial Suspension Plasma Spray Thermal Barrier Coatings—Thermal and Lifetime Performance, Surf. Coat. Technol., 2015, 268, p 15-23

    Article  Google Scholar 

  9. R. Hui, Z. Wang, O. Kesler, L. Rose, J. Jankovic, S. Yick, R. Maric, and D. Ghosh, Thermal Plasma Spraying for SOFCs: Applications, Potential Advantages, and Challenges, J. Power Sources, 2007, 170(2), p 308-323

    Article  Google Scholar 

  10. K. VanEvery, M.J.M. Krane, R.W. Trice, H. Wang, W. Porter, M. Besser, D. Sordelet, J. Ilavsky, and J. Almer, Column Formation in Suspension Plasma-Sprayed Coatings and Resultant Thermal Properties, J. Therm. Spray Technol., 2011, 20(4), p 817-828

    Article  Google Scholar 

  11. U. Schulz, B. Saruhan, K. Fritscher, and C. Leyens, Review on Advanced EB-PVD Ceramic Topcoats for TBC Applications, Int. J. App. Ceram. Technol., 2004, 1(4), p 302-315

    Article  Google Scholar 

  12. S. Sampath, U. Schulz, M.O. Jarligo, and S. Kuroda, Processing Science of Advanced Thermal-Barrier Systems, MRS Bull., 2012, 37(10), p 903-910

    Article  Google Scholar 

  13. K. VanEvery, M.J.M. Krane, and R.W. Trice, Parametric Study of Suspension Plasma Spray Processing Parameters on Coating Microstructures Manufactured from Nanoscale Yttria-Stabilized Zirconia, Surf. Coat. Technol., 2012, 206(8–9), p 2464-2473

    Article  Google Scholar 

  14. E.M. Cotler, D.Y. Chen, and R.J. Molz, Pressure-Based Liquid Feed System for Suspension Plasma Spray Coatings, J. Therm. Spray Technol., 2011, 20(4), p 967-973

    Article  Google Scholar 

  15. S. Kuroda and T.W. Clyne, The Quenching Stress in Thermally Sprayed Coatings, Thin Solid Films, 1991, 200(1), p 49-66

    Article  Google Scholar 

  16. J. Matejicek, S. Sampath, D. Gilmore, and R. Neiser, In Situ Measurement of Residual Stresses and Elastic Moduli in Thermal Sprayed Coatings: Part 2: Processing Effects on Properties of Mo Coatings, Acta Mater., 2003, 51(3), p 873-885

    Article  Google Scholar 

  17. J. Matejicek and S. Sampath, In Situ Measurement of Residual Stresses and Elastic Moduli in Thermal Sprayed Coatings: Part 1: Apparatus and Analysis, Acta Mater., 2003, 51(3), p 863-872

    Article  Google Scholar 

  18. S. Sampath, V. Srinivasan, A. Valarezo, A. Vaidya, and T. Streibl, Sensing, Control, and In Situ Measurement of Coating Properties: An Integrated Approach Toward Establishing Process-Property Correlations, J. Therm. Spray Technol., 2009, 18(2), p 243-255

    Article  Google Scholar 

  19. Y. Liu, T. Nakamura, V. Srinivasan, A. Vaidya, A. Gouldstone, and S. Sampath, Non-linear Elastic Properties of Plasma-Sprayed Zirconia Coatings and Associated Relationships with Processing Conditions, Acta Mater., 2007, 55(14), p 4667-4678

    Article  Google Scholar 

  20. Y. Liu, T. Nakamura, G. Dwivedi, A. Valarezo, and S. Sampath, Anelastic Behavior of Plasma-Sprayed Zirconia Coatings, J. Am. Ceram. Soc., 2008, 91(12), p 4036-4043

    Article  Google Scholar 

  21. G. Dwivedi, T. Nakamura, and S. Sampath, Controlled Introduction of Anelasticity in Plasma-Sprayed Ceramics, J. Am. Ceram. Soc., 2011, 94, p 104-111

    Article  Google Scholar 

  22. V. Viswanathan, G. Dwivedi, and S. Sampath, Engineered Multilayer Thermal Barrier Coatings for Enhanced Durability and Functional Performance, J. Am. Ceram. Soc., 2014, 97(9), p 2770-2778

    Article  Google Scholar 

  23. V. Viswanathan, G. Dwivedi, and S. Sampath, Multilayer, Multimaterial Thermal Barrier Coating Systems: Design, Synthesis, and Performance Assessment, J. Am. Ceram. Soc., 2015, 98(6), p 1769-1777

    Article  Google Scholar 

  24. C.S. Ramachandran, V. Balasubramanian, and P.V. Ananthapadmanabhan, Multiobjective Optimization of Atmospheric Plasma Spray Process Parameters to Deposit Yttria-Stabilized Zirconia Coatings Using Response Surface Methodology, J. Therm. Spray Technol., 2011, 20(3), p 590-607

    Article  Google Scholar 

  25. T. Streibl, A. Vaidya, M. Friis, V. Srinivasan, and S. Sampath, A Critical Assessment of Particle Temperature Distributions During Plasma Spraying: Experimental Results for YSZ, Plasma. Chem. Plasma. Phy., 2006, 26(1), p 73-102

    Article  Google Scholar 

  26. V. Rat, C. Delbos, C. Bonhomme, J. Fazilleau, J.F. Coudert, and P. Fauchais, Understanding of Suspension Plasma Spraying, High. Temp. Mater., 2004, 8(1), p 95-117

    Article  Google Scholar 

  27. P. Fauchais, V. Rat, J.F. Coudert, R. Etchart-Salas, and G. Montavon, Operating Parameters for Suspension and Solution Plasma-Spray Coatings, Surf. Coat. Technol., 2008, 202(18), p 4309-4317

    Article  Google Scholar 

  28. J. Oberste Berghaus, J.-G. Legoux, C. Moreau, F. Tarasi, and T. Chráska, Mechanical and Thermal Transport Properties of Suspension Thermal-Sprayed Alumina-Zirconia Composite Coatings, J. Therm. Spray Technol., 2008, 17(1), p 91-104

    Article  Google Scholar 

  29. C. Delbos, J. Fazilleau, V. Rat, J.-F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying Part 2: Zirconia Particle Treatment and Coating Formation, Plasma. Chem. Plasma. Phy., 2006, 26(4), p 393-414

    Article  Google Scholar 

  30. A. Joulia, W. Duarte, S. Goutier, M. Vardelle, A. Vardelle, and S. Rossignol, Tailoring the Spray Conditions for Suspension Plasma Spraying, J. Therm. Spray Technol., 2015, 24(1–2), p 24-29

    Google Scholar 

  31. H. Kassner, R. Siegert, D. Hathiramani, R. Vassen, and D. Stoever, Application of Suspension Plasma Spraying (SPS) for Manufacture of Ceramic Coatings, J. Therm. Spray Technol., 2008, 17(1), p 115-123

    Article  Google Scholar 

  32. S. Sampath, X.Y. Jiang, J. Matejicek, A.C. Leger, and A. Vardelle, Substrate Temperature Effects on Splat Formation, Microstructure Development and Properties of Plasma Sprayed Coatings Part I: Case Study for Partially Stabilized Zirconia, Mater. Sci. Engg. A., 1999, 272(1), p 181-188

    Article  Google Scholar 

  33. M. Marr and O. Kesler, Permeability and Microstructure of Suspension Plasma-Sprayed YSZ Electrolytes for SOFCs on Various Substrates, J. Therm. Spray Technol., 2012, 21(6), p 1334-1346

    Article  Google Scholar 

  34. A. Ganvir, N. Curry, S. Björklund, N. Markocsan, and P. Nylén, Characterization of Microstructure and Thermal Properties of YSZ Coatings Obtained by Axial Suspension Plasma Spraying (ASPS), J. Therm. Spray Technol., 2015, 24(7), p 1195-1204

    Article  Google Scholar 

  35. A. Vaidya, V. Srinivasan, T. Streibl, M. Friis, W. Chi, and S. Sampath, Process Maps for Plasma Spraying of Yttria-Stabilized Zirconia: An Integrated Approach to Design, Optimization and Reliability, Mater. Sci. Eng. A., 2008, 497(1), p 239-253

    Article  Google Scholar 

  36. A. Valarezo, W.B. Choi, W. Chi, A. Gouldstone, and S. Sampath, Process Control and Characterization of NiCr Coatings by HVOF-DJ2700 System: A Process Map Approach, J. Therm. Spray Technol., 2010, 19(5), p 852-865

    Article  Google Scholar 

  37. R. Vaßen, H. Kaßner, G. Mauer, and D. Stöver, Suspension Plasma Spraying: Process Characteristics and Applications, J. Therm. Spray Technol., 2010, 19(1), p 219-225

    Article  Google Scholar 

  38. M. Mutter, G. Mauer, R. Mücke, R. Vaßen, H.C. Back, and J. Gibmeier, Investigations on the Initial Stress Evolution During Atmospheric Plasma Spraying of YSZ by In Situ Curvature Measurement, J. Therm. Spray Technol., 2016, 25(4), p 672-683

    Article  Google Scholar 

  39. K. Shinoda, J. Colmenares-Angulo, A. Valarezo, and S. Sampath, Effect of Deposition Rate on the Stress Evolution of Plasma-Sprayed Yttria-Stabilized Zirconia, J. Therm. Spray Technol., 2012, 21(6), p 1224-1233

    Article  Google Scholar 

  40. A. Valarezo and S. Sampath, An Integrated Assessment of Process-Microstructure-Property Relationships for Thermal-Sprayed NiCr Coatings, J. Therm. Spray Technol., 2011, 20(6), p 1244-1258

    Article  Google Scholar 

  41. M. Gupta, G. Dwivedi, P. Nylen, A. Vackel, and S. Sampath, An Experimental Study of Microstructure-Property Relationships in Thermal Barrier Coatings, J. Therm. Spray Technol., 2013, 22(5), p 659-670

    Article  Google Scholar 

  42. C.G. Levi, J.W. Hutchinson, M.-H. Vidal-Sétif, and C.A. Johnson, Environmental Degradation of Thermal-Barrier Coatings by Molten Deposits, MRS Bull., 2012, 37(10), p 932-941

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Foundation—Partnership for Innovation (NSF-PFI Grant No. IIP-1114205) and The Consortium for Thermal Spray Technology of Stony Brook University. The authors appreciate the Oerlikon Metco Team: Jose Colmenares-Angulo, Riston Rocchio-Heller, Jing Liu, Jonathan Gutleber, Ronald Molz, David Hawley, Montia Nestler, Michael Tobin and Richard Schmid for the help and support in setting up a suspension spray system at Stony Brook.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Sampath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chidambaram Seshadri, R., Dwivedi, G., Viswanathan, V. et al. Characterizing Suspension Plasma Spray Coating Formation Dynamics through Curvature Measurements. J Therm Spray Tech 25, 1666–1683 (2016). https://doi.org/10.1007/s11666-016-0460-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-016-0460-2

Keywords

Navigation