Skip to main content
Log in

Cold-Sprayed Nanostructured Pure Cobalt Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Cold-sprayed pure cobalt coatings were deposited on carbon-steel substrate. Submicrometer particles for spraying were produced via cryomilling. Deposits were produced using different processing conditions (gas temperature and pressure, nozzle-to-substrate distance) to evaluate the resulting variations in grain size dimension, microhardness, adhesion strength, and porosity. The coating mechanical properties improved greatly with higher temperature and carrying-gas pressure. The coating microstructure was analyzed as a function of spraying condition by transmission electron microscopy (TEM) observations, revealing many different microstructural features for coatings experiencing low or high strain rates during deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Karthikeyan, Cold Spray Process, Handbook of Thermal Spray Technology, J.R. Davis, Ed., ASM International, Materials Park, 2004, p 77-84

  2. A. Papyrin, Cold Spray Technology, Adv. Mater. Process., 2001, 159(9), p 49-51

    Google Scholar 

  3. A.P. Alkhimov, A.N. Papyrin, V.F. Kosarev, N.I. Nesterovich, and M.M. Shushpanov, Gas-Dynamic Spraying Method for Applying a Coating, U.S. Patent 5,302,414, 1994

  4. L. Ajdelsztajn, B. Jodoin, G.E. Kim, J.M. Schoenung, and J. Mondoux, Cold Spray Deposition of Nanocrystalline Aluminum Alloys, Metall. Mater. Trans. A, 2005, 36(3), p 657-666

    Article  Google Scholar 

  5. P. Richer, B. Jodoin, L. Ajdelsztajn, and E.J. Lavernia, Substrate Roughness and Thickness Effects on Cold Spray Nanocrystalline Al-Mg Coatings, J. Therm. Spray Technol., 2006, 15(2), p 246-254

    Article  Google Scholar 

  6. L. Ajdelsztajn, B. Jodoin, P. Richer, E. Sansoucy, and E.J. Lavernia, Cold Gas Dynamic Spraying of Iron-Base Amorphous Alloy, J. Therm. Spray Technol., 2006, 15(4), p 495-500

    Article  Google Scholar 

  7. T.H. Van Steenkiste, J.R. Smith, and R.E. Teets, Aluminum Coatings via Kinetic Spray with Relatively Large Powder Particles, Surf. Coat. Technol., 2002, 154, p 237-252

    Article  Google Scholar 

  8. R.C. Dykhuizen, M.F. Smith, D.L. Gilmore, R.A. Neiser, X. Jiang, and S. Sampath, Impact of High Velocity Cold Spray Particles, J. Therm. Spray Technol., 1999, 8(4), p 559-564

    Article  Google Scholar 

  9. B. Jodoin, L. Ajdelsztajn, E. Sansoucy, A. Ziiniga, P. Richer, and E.J. Lavernia, Effect of Particle Size, Morphology and Hardness on Cold Gas Dynamic Sprayed Aluminum Alloy Coatings, Surf. Coat. Technol., 2006, 201, p 3422-3429

    Article  Google Scholar 

  10. P. Cavaliere and A. Silvello, Fatigue Behavior of Cold Sprayed Metals and Alloys: A Critical Review, Surf. Eng., 2016, doi:10.1179/1743294415Y.0000000100

    Google Scholar 

  11. H. Assadi, T. Schmidt, H. Richter, J.-O. Kliemann, K. Binder, F. Gärtner, T. Klassen, and H. Krey, On Parameter Selection in Cold Spraying, J. Therm. Spray Technol., 2011, 20, p 1161-1176

    Article  Google Scholar 

  12. P. Cavaliere and A. Silvello, Mechanical and Microstructural Behavior of Cold-Sprayed Titanium- and Nickel-Based Coatings, J. Therm. Spray Technol., 2015, 24(8), p 1506-1512

    Article  Google Scholar 

  13. P. Cavaliere and A. Silvello, Processing Conditions Affecting Residual Stresses and Fatigue Properties of Cold Spray Deposits, Int. J. Adv. Manuf. Technol., 2015, 81(9), p 1857-1862

    Article  Google Scholar 

  14. P. Cavaliere, A. Perrone, and A. Silvello, Mechanical and Microstructural Behavior of Nanocomposites Produced via Cold Spray, Compos. B Eng., 2014, 67, p 326-331

    Article  Google Scholar 

  15. A.N. Papyrin, V.F. Kosarev, S.V. Klinkov, and A.P. Alkhimov, On the Interaction of High Speed Particles with a Substrate under the Cold Spraying, International Thermal Spray Conference 2002, E. Lugscheider and C.C. Berndt, Ed., March 4-6, 2002 (Essen, Germany), DVS German Welding Society, 2003, p 380-384.

  16. M. Villa, S. Dosta, J. Fernandez, and J.M. Guilemany, La Proyección Fría (CGs): Una Alternativa a Las Tecnologías Convencionales de Deposición, Rev. Metal., 2012, 48, p 175-191 (in Spanish)

    Article  Google Scholar 

  17. H. Tabbara, S. Gu, and D.G. McCartney, Computational Modelling of Titanium Particles in Warm Spray, Comput. Fluids, 2011, 44, p 358-368

    Article  Google Scholar 

  18. W.Y. Li, H. Liao, C.J. Li, G. Li, C. Coddet, and X.F. Wang, On High Velocity Impact of Micro-sized Metallic Particles in Cold Spraying, Appl. Surf. Sci., 2006, 253, p 2852-2862

    Article  Google Scholar 

  19. Y. Zou, D. Goldbaum, J.A. Szpunar, and S. Yue, Microstructure and Nanohardness of Cold-Sprayed Coatings: Electron Backscattered Diffraction and Nanoindentation Studies, Scr. Mater., 2010, 62, p 395-398

    Article  Google Scholar 

  20. F. Gartner, T. Stoltenhoff, T. Schmidt, and H. Kreye, The Cold Spray Process and Its Potential for Industrial Applications, J. Therm. Spray Technol., 2006, 15(2), p 223-232

    Article  Google Scholar 

  21. D.L. Gilmore, R.C. Dykhuizen, R.A. Neiser, T.J. Roemer, and M.F. Smith, Particle Velocity and Deposition Efficiency in the Cold Spray Process, J. Therm. Spray Technol., 1999, 8(4), p 576-582

    Article  Google Scholar 

  22. T. Stoltenhoff, H. Kreye, and H.J. Richter, An Analysis of the Cold Spray Process and Its Coatings, J. Therm. Spray Technol., 2002, 11(4), p 542-550

    Article  Google Scholar 

  23. T. Schmidt, F. Gartner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54, p 729-742

    Article  Google Scholar 

  24. M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, and D. Helfritch, Computational Analysis of the Interfacial Bonding Between Feed-Powder Particles and the Substrate in the Cold-Gas Dynamic-Spray Process, Appl. Surf. Sci., 2003, 219, p 211-227

    Article  Google Scholar 

  25. T.H. Van Steenkiste, J.R. Smith, and R.E. Teets, Aluminum Coatings via Kinetic Spray with Relatively Large Powder Particles, Surf. Coat. Technol., 2002, 154, p 237-252

    Article  Google Scholar 

  26. T. Schmidt, F. Gartner, and H. Kreye, New Developments in Cold Spray Based on Higher Gas and Particle Temperatures, J. Therm. Spray Technol., 2006, 15(4), p 488-494

    Article  Google Scholar 

  27. C.J. Li, W.-Y. Li, and H. Liao, Examination of the Critical Velocity of Deposition of Particles in Cold Spraying, J. Therm. Spray Technol., 2006, 15(2), p 212-222

    Article  Google Scholar 

  28. T.H. Van Steenkiste, J.R. Smith, R.E. Teets, J.J. Moleski, D.W. Gorkiewicz, R.P. Tison, D.R. Marantz, K.A. Kowalsky, W.L. Riggs, P.H. Zajchowski, B. Pilsner, R.C. McCune, and K.J. Barnett, Kinetic Spray Coatings, Surf. Coat. Technol., 1999, 111, p 62-71

    Article  Google Scholar 

  29. H. Assadi, F. Gartner, T. Stolenhoff, H. Kreye, and K. Kang, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51, p 4379-4394

    Article  Google Scholar 

  30. A. Moridi, S.M. Hassani-Gangaraj, S. Vezzù, L. Trsko, and M. Guagliano, Fatigue Behavior of Cold Spray Coatings: The Effect of Conventional and Severe Shot Peening as Pre-/post-treatment, Surf. Coat. Technol., 2015, 283, p 247-254

    Article  Google Scholar 

  31. K. Balani, A. Agarwal, S. Seal, and J. Karthikeyan, Transmission Electron Microscopy of Cold Sprayed 1100 Aluminum Coating, Scr. Mater., 2005, 53, p 845-850

    Article  Google Scholar 

  32. A.C. Hall, L.N. Brewer, and T.J. Roemer, Preparation of Aluminum Coatings Containing Homogeneous Nanocrystalline Microstructures Using the Cold Spray Process, J. Therm. Spray Technol., 2008, 17(3), p 352-359

    Article  Google Scholar 

  33. P. Cavaliere, A. Perrone, and A. Silvello, Multi-objective Optimization of Steel Nitriding, Eng. Sci. Technol., 2016, 19, p 292-312

    Google Scholar 

  34. R.R. Chromik, D. Goldbaum, J.M. Shockley, S. Yue, E. Irissou, J.G. Legoux, and N.X. Randall, Modified Ball Bond Shear Test for Determination of Adhesion Strength of Cold Spray Splats, Surf. Coat. Technol., 2010, 205, p 1409-1414

    Article  Google Scholar 

  35. M. Grujicic, C.L. Zhao, C. Thong, W.S. DeRosset, and D. Helfritch, Analysis of the Impact Velocity of Powder Particles in the Cold-Gas Dynamic-Spray Process, Mater. Sci. Eng. A, 2004, 368, p 222-230

    Article  Google Scholar 

  36. J. Henao, A. Concustell, I.G. Cano, N. Cinca, S. Dosta, and J.M. Guilemany, Influence of Cold Gas Spray Process Conditions on the Microstructure of Fe-Based Amorphous Coatings, J. Alloys Compd., 2015, 622, p 995-999

    Article  Google Scholar 

  37. A.L. Greer, Y.Q. Cheng, and E. Ma, Shear Bands in Metallic Glasses, Mater. Sci. Eng. R, 2013, 74(71), p 71-132

    Article  Google Scholar 

  38. C. Borchers, T. Stoltenhoff, M. Hahn, M. Schulze, H. Assadi, C. Suryanarayana, F. Gärtner, and T. Klassen, Strain-Induced Phase Transformation of MCrAlY, Adv. Eng. Mater., 2015, 17, p 723-731

    Article  Google Scholar 

  39. P. Cavaliere, Mechanical Properties of Nanocrystalline Metals and Alloys Studied via Multi-step Nanoindentation and Finite Element Calculations, Mater. Sci. Eng., 2009, A512, p 1-9

    Article  Google Scholar 

  40. J. Ajaja, D. Goldbaum, and R.R. Chromik, Characterization of Ti Cold Spray Coatings by Indentation Methods, Acta Astronaut., 2011, 69, p 923-928

    Article  Google Scholar 

  41. D. Goldbaum, J. Ajaja, R.R. Chromika, W. Wong, S. Yue, E. Irissou, and J.G. Legoux, Mechanical Behavior of Ti Cold Spray Coatings Determined by a Multi-scale Indentation Method, Mater. Sci. Eng. A, 2011, 530, p 253-265

    Article  Google Scholar 

  42. H. Koivuluoto, A. Coleman, K. Murray, M. Kearns, and P. Vuoristo, High Pressure Cold Sprayed (HPCS) and Low Pressure Cold Sprayed (LPCS) Coatings Prepared from OFHC Cu Feedstock: Overview from Powder Characteristics to Coating Properties, J. Therm. Spray Technol., 2012, 21, p 1065-1075

    Article  Google Scholar 

  43. L. Venkatesh, N.M. Chavan, and G. Sundararajan, The Influence of Powder Particle Velocity and Microstructure on the Properties of Cold Sprayed Copper Coatings, J. Therm. Spray Technol., 2011, 20, p 1009-1021

    Article  Google Scholar 

  44. L. Ajdelsztajn, B. Jodoin, and J.M. Schoenung, Synthesis and Mechanical Properties of Nanocrystalline Ni Coatings Produced by Cold Gas Dynamic Spraying, Surf. Coat. Technol., 2006, 201, p 1166-1172

    Article  Google Scholar 

  45. W.Y. Li, H. Liao, C.J. Li, G. Li, C. Coddet, and X.F. Wang, On High Velocity Impact of Micro-sized Metallic Particles in Cold Spraying, Appl. Surf. Sci., 2006, 253, p 2852-2862

    Article  Google Scholar 

  46. C. Borchers, F. Gartner, T. Stoltenhoff, and H. Kreye, Formation of Persistent Dislocation Loops by Ultra-high Strain-Rate Deformation During Cold Spraying, Acta Mater., 2005, 53, p 2991-3000

    Article  Google Scholar 

  47. T. Schmidt, F. Gartner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54, p 729-742

    Article  Google Scholar 

  48. J. Sort, A. Zhilyaev, M. Zielinska, J. Nogués, S. Suriñach, J. Thibault, and M.D. Baro, Microstructural Effects and Large Microhardness in Cobalt Processed by High Pressure Torsion Consolidation of Ball Milled Powders, Acta Mater., 2003, 51, p 6385-6393

    Article  Google Scholar 

  49. F. Fellah, G. Dirras, J. Gubicza, F. Schoenstein, N. Jouini, S.M. Cherif, C. Gatel, and J. Douin, Microstructure and Mechanical Properties of Ultrafine-Grained fcc/hcp Cobalt Processed by a Bottom-up Approach, J. Alloys Compd., 2010, 489, p 424-428

    Article  Google Scholar 

  50. H. Nakano, M. Yuasa, and M. Mabuchi, Changes in the Grain Boundaries of a Nanolamellar Structured Co-Cu Alloy by Annealing, Scr. Mater., 2009, 61, p 371-374

    Article  Google Scholar 

  51. X. Wu, N. Tao, Y. Hong, G. Liu, B. Xu, J. Lu, and K. Lu, Strain-Induced Grain Refinement of Cobalt During Surface Mechanical Attrition Treatment, Acta Mater., 2005, 53, p 681-691

    Article  Google Scholar 

  52. D.A. Hughes and N. Hansen, Graded Nanostructures Produced by Sliding and Exhibiting Universal Behavior, Phys. Rev. Lett., 2001, 87, p 135503

    Article  Google Scholar 

  53. M.A. Meyers, O. Vöhringer, and V.A. Lubarda, The Onset of Twinning in Metals: A Constitutive Description, Acta Mater., 2001, 49, p 4025-4039

    Article  Google Scholar 

  54. J.W. Christian and S. Mahajan, Deformation Twinning, Prog. Mater. Sci., 1995, 39, p 1-157

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Cavaliere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavaliere, P., Perrone, A. & Silvello, A. Cold-Sprayed Nanostructured Pure Cobalt Coatings. J Therm Spray Tech 25, 1168–1176 (2016). https://doi.org/10.1007/s11666-016-0434-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-016-0434-4

Keywords

Navigation