Skip to main content
Log in

Arc-Plasma Wire Spraying: An Optical Study of Process Phenomenology

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In the present paper, we report on the results of an experimental study of heat- and mass-transfer processes in a Plazer 30-PL-W plasma-jet facility used for arc-plasma wire spraying. Using an original optical diagnostic system, we have studied melting behavior of the metal wire, break up and atomization of liquid metal. For the first time, experimental data on the in-flight velocity and temperature of spray particles in arc-plasma wire spraying were obtained. In spite of moderate particle velocities (about 50 m/s), the obtained steel coatings proved to have a low porosity of 1.5%. While studying the spraying process of tungsten wire, we observed the occurrence of anomalous high-velocity (over 4000 m/s) outbursts ejected from the surface of liquid metal droplets. The nature of such outbursts calls for further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L. Pawlowski, Science and Engineering of Thermal Spray Coatings, 2nd ed., Wiley, Chichester, 2008, p 656

    Book  Google Scholar 

  2. J.R. Davis, Ed., Handbook of Thermal Spray Technology, ASM International, Materials Park, OH, 2004

  3. K.E. Schneider, V. Belashchenko, M. Dratwinski, S. Siegmann, and A. Zagorski, Thermal Spraying for Power Generation Components, Wiley, Weinheim, 2007, p 271

    Google Scholar 

  4. S. Sampath, Thermal Spray Applications in Electronics and Sensors: Past, Present and Future, J. Therm. Spray Technol., 2009, 19(5), p 921-949

    Article  Google Scholar 

  5. S. Lima and B.R. Marple, Thermal Spray Coatings Engineered from Nanostructured Ceramic Agglomerated Powders for Structural, Thermal Barrier and Biomedical Applications: A Review, J. Therm. Spray Technol., 2007, 16(1), p 40-63

    Article  Google Scholar 

  6. W. Tillmann, E. Vogli, I. Baumann, B. Krebs, and J. Nebel, Wear-Protective Cermet Coatings for Forming Tools, Mater. Werkst., 2010, 41(7), p 597-607

    Article  Google Scholar 

  7. V. Ulianitsky, A. Shtertser, S. Zlobin, and I. Smurov, Computer-Controlled Detonation Spraying: From Process Fundamentals Toward Advanced Applications (Review), J. Therm. Spray Technol., 2011, 20(4), p 791-801

    Article  Google Scholar 

  8. M.Yu. Kharlamov, I.V. Krivtsun, V.N. Korzhik, and S.V. Petrov, Formation of Liquid Metal Film at the Tip of Wire-Anode in Plasma-Arc Spraying, Paton Weld. J., 2011, 12, p 2-6

    Google Scholar 

  9. I.P. Gulyaev, P.Y. Gulyaev, V.N. Korzhik, A.V. Dolmatov, V.I. Iordan, I.V. Krivtsun, M.Y. Kharlamov, and A.I. Demyanov, An Experimental Study of the Plasma-Arc Wire Spraying Process, Paton Weld. J., 2015, 3(4), p 36-41

    Google Scholar 

  10. M.Yu. Kharlamov, I.V. Krivtsun, and V.N. Korzhyk, Dynamic Model of the Wire Dispersion Process in Plasma-Arc Spraying, J. Therm. Spray Technol., 2014, 23(3), p 420-430

    Article  Google Scholar 

  11. M.Yu. Kharlamov, I.V. Krivtsun, V.N. Korzhyk, Y.V. Ryabovolyk, and O.I. Dem’yanov, Simulation of Motion, Heating, and Breakup of Molten Metal Droplets in the Plasma Jet at Plasma-Arc Spraying, J. Therm. Spray Technol., 2015, 24(4), p 659-670

    Article  Google Scholar 

  12. N.A. Hussary and J.V.R. Heberlein, Atomization and Particle-Jet Interactions in the Wire-Arc Spraying Process, J. Therm. Spray Technol., 2001, 10, p 604-610

    Article  Google Scholar 

  13. W. Tillmann and M. Abdulgader, Wire Composition: Its Effect on Metal Disintegration and Particle Formation in Twin-Wire Arc-Spraying Process, J. Therm. Spray Technol., 2013, 22(2-3), p 352-362

    Article  Google Scholar 

  14. H.L. Liao, Y.L. Zhu, R. Bolot, C. Coddet, and S.N. Ma, Size Distribution of Particles from Individual Wires and the Effects of Nozzle Geometry in Twin Wire Arc Spraying, Surf. Coat. Technol., 2005, 200, p 2123-2130

    Article  Google Scholar 

  15. A. Pourmousa, J. Mostaghimi, A. Abedini, and S. Chandra, Particle Size Distribution in a Wire-Arc Spraying System, Therm. Spray Technol., 2005, 14(4), p 502-510

    Article  Google Scholar 

  16. G. Mauer, R. Vaßen, and D. Stover, Plasma and Particle Temperature Measurements in Thermal Spray: Approaches and Applications, Therm. Spray Technol., 2011, 20(3), p 391-406

    Article  Google Scholar 

  17. Patent Pending, A Method of Spectral-Brightness Pyrometry of Objects with a Non-Uniform Surface Temperature, Russian Federation No. 2015123313, 17 June 2015

  18. P.Yu. Gulyaev, H. Cui, I.P. Gulyaev, and I.V. Milyukova, Temperature Measurements for Ni-Al and Ti-Al Phase Control in SHS Synthesis and Plasma Spray Processes, High Temp. High Press., 2015, 44(2), p 83-92

    Google Scholar 

  19. K.A. Ermakov, A.V. Dolmatov, and I.P. Gulyaev, A system for Optical Diagnostics of Particle Velocity and Temperature in Gas-Thermal Spraying Processes, Bull. Yugra State Univ., 2014, 33(2), p 56-68 [in Russian]

    Google Scholar 

  20. A.V. Dolmatov, K.A. Ermakov, V.V. Lavrikov, and A.O. Makoveev, An Automated Complex for Calibration of Thermography Systems Based on the MATLAB Software, Bull. Yugra State Univ., 2012, 25(2), p 59-63 [in Russian]

    Google Scholar 

  21. M.P. Boronenko, I.P. Gulyaev, P.Y. Gulyaev, A.I. Demyanov, A.V. Dolmatov, V.I. Iordan, V.N. Korzhik, I.V. Krivtsun, and M.Yu. Kharlamov, Estimate of Dispersed Phase Velocity and Temperature in Plasma-Arc Spraying Jets, Fundam. Res., 2014, 11(10), p 2135-2140 [in Russian]

    Google Scholar 

  22. Strong lines of Argon (Ar), http://physics.nist.gov/PhysRefData/Handbook/Tables/argontable2.htm

  23. A.N. Magunov, The Choice of a Spectral Interval Within Which a Heated Opaque Object Radiates as a Gray Body, Instrum. Exp. Tech., 2010, 53(6), p 910-914

    Article  Google Scholar 

  24. A.V. Dolmatov, I.P. Gulyaev, and R.R. Imamov, A Spectral Pyrometer for the Control of Temperature in Thermal Synthesis Processes, Bull. Yugra State Univ., 2014, 33(2), p 32-42 [in Russian]

    Google Scholar 

  25. I.P. Gulyaev, K.A. Ermakov, and P.Yu. Gulyaev, New High-Speed Combination of Spectroscopic and Brightness Pyrometry for Studying Particles Temperature Distribution in Plasma Jets, Eur. Res., 2014, 71(3-2), p 564-570

    Google Scholar 

  26. A.N. Magunov, Spectral Pyrometry of Objects with a Nonuniform Temperature, Tech. Phys. Russ. J. Appl. Phys., 2010, 55(7), p 991-995

    Google Scholar 

  27. A.V. Dolmatov, I.P. Gulyaev, and V.I. Jordan, The Optical Control System of Dispersed Phase Properties in Thermal Spray Process, IOP Conf. Ser. Mater. Sci. Eng., 2015, 81, p 012041

    Article  Google Scholar 

  28. Y.P. Raiser, Gas Discharge Physics, Springer, Berlin, 1991, p 449

    Book  Google Scholar 

Download references

Acknowledgment

This work was supported by the Russian Foundation for Basic Research (Projects 14-08-90428 and 15-48-00100) and by the Ukrainian National Academy of Sciences (Project 06-08-14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Gulyaev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulyaev, I.P., Dolmatov, A.V., Kharlamov, M.Y. et al. Arc-Plasma Wire Spraying: An Optical Study of Process Phenomenology. J Therm Spray Tech 24, 1566–1573 (2015). https://doi.org/10.1007/s11666-015-0356-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-015-0356-6

Keywords

Navigation