Skip to main content
Log in

Room Temperature Synthesis of Highly Compact TiO2 Coatings by Vacuum Kinetic Spraying to Serve as a Blocking Layer in Polymer Electrolyte-Based Dye-Sensitized Solar Cells

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Vacuum kinetic spraying (VKS) was used to form a blocking layer (BL) in order to increase the efficiency of dye-sensitized solar cells. Nano-sized TiO2 powders were deposited on fluorine-doped tin oxide (FTO) glass while varying the coating parameters including the mass flow, substrate transverse speed, and number of coating passes in order to control the thickness of the BL. Compared to the cell without a BL, the open-circuit voltage and short-circuit current density of the solar cell with a VKS-coated BL were noticeably improved. Consequently, the photoconversion efficiency increased up to 5.6%, which is significantly higher than that of a spin-coated BL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Oregan and M. Gratzel, A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal TiO2 Films, Nature, 1991, 353, p 737-740

    Article  Google Scholar 

  2. A. Hagfeldt, G. Boschloo, L.C. Sun, L. Kloo, and H. Pettersson, Dye-Sensitized Solar Cells, Chem. Rev., 2010, 110, p 6595-6663

    Article  Google Scholar 

  3. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P.D. Yang, Nanowire Dye-Sensitized Solar Cells, Nat. Mater., 2005, 4, p 455-459

    Article  Google Scholar 

  4. A. Nattestad, A.J. Mozer, M.K.R. Fischer, Y.B. Cheng, A. Mishra, P. Bauerle, and U. Bach, Highly Efficient Photocathodes for Dye-Sensitized Tandem Solar Cells, Nat. Mater., 2010, 9, p 31-35

    Article  Google Scholar 

  5. J.H. Yum, E. Baranoff, F. Kessler, T. Moehl, S. Ahmad, T. Bessho, A. Marchioro, E. Ghadiri, J.E. Moser, C.Y. Yi, M.K. Nazeeruddin, and M. Gratzel, A Cobalt Complex Redox Shuttle for Dye-Sensitized Solar Cells with High Open-Circuit Potentials, Nat. Commun., 2012, 3, p 1-8

    Article  Google Scholar 

  6. J.R. Jennings, Y. Liu, Q. Wang, S.M. Zakeeruddin, and M. Gratzel, The Influence of Dye Structure on Charge Recombination in Dye-Sensitized Solar Cells, Phys. Chem. Chem. Phys., 2011, 13, p 6637-6648

    Article  Google Scholar 

  7. M.S. Kang, J.H. Kim, J. Won, and Y.S. Kang, Oligomer Approaches for Solid-State Dye-Sensitized Solar Cells Employing Polymer Electrolytes, J. Phys. Chem. C, 2007, 111, p 5222-5228

    Article  Google Scholar 

  8. P. Sudhagar, S. Nagarajan, Y.G. Lee, D. Song, T. Son, W. Cho, M. Heo, K. Lee, J. Won, and Y.S. Kang, Synergistic Catalytic Effect of a Composite (CoS/PEDOT:PSS) Counter Electrode on Triiodide Reduction in Dye-Sensitized Solar Cells, ACS Appl. Mater. Interfaces., 2011, 3, p 1838-1843

    Article  Google Scholar 

  9. Y.G. Lee, S. Park, W. Cho, T. Son, P. Sudhagar, J.H. Jung, S. Wooh, K. Char, and Y.S. Kang, Effective Passivation of Nanostructured TiO2 Interfaces with PEG-Based Oligomeric Coadsorbents to Improve the Performance of Dye-Sensitized Solar Cells, J. Phys. Chem. C, 2012, 116, p 6770-6777

    Article  Google Scholar 

  10. A. Yella, H.W. Lee, H.N. Tsao, C.Y. Yi, and A.K. Chandiran, Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency, Science, 2011, 334, p 629-634

    Article  Google Scholar 

  11. U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, Solid-State Dye-Sensitized Mesoporous TiO2 Solar Cells with High Photon-to-Electron Conversion Efficiencies, Nature, 1998, 395, p 583-585

    Article  Google Scholar 

  12. P. Wang, S.M. Zakeeruddin, J.E. Moser, M.K. Nazeeruddin, T. Sekiguchi, and M. Gratzel, A Stable Quasi-Solid-State Dye-Sensitized Solar Cell with an Amphiphilic Ruthenium Sensitizer and Polymer Gel Electrolyte, Nat. Mater., 2003, 2, p 498

    Google Scholar 

  13. H. Yu, S. Zhang, H. Zhao, G. Will, and P. Liu, An Efficient and Low-Cost TiO2 Compact Layer for Performance Improvement of Dye-Sensitized Solar Cells, Electrochem. Acta, 2009, 54, p 1319-1324

    Article  Google Scholar 

  14. H.-J. Kim, J.-D. Jeon, D.Y. Kim, J.-J. Lee, and S.-Y. Kwak, Improved Performance of Dye-Sensitized Solar Cells with Compact TiO2 Blocking Layer Prepared Using Low-Temperature Reactive ICP-Assisted DC Magnetron Sputtering, J. Ind. Eng. Chem., 2012, 18, p 1807-1812

    Article  Google Scholar 

  15. D. Qian, Y. Li, Q. Zhang, G. Shi, and H. Wang, Anatase TiO2 Sols Derived from Peroxotitanium Acid and to Form Transparent TiO2 Compact Film for Dye-Sensitized Solar Cells, J. Alloys Compd., 2011, 509, p 10121-10126

    Article  Google Scholar 

  16. S. Lee, D.H. Kim, J.Y. Kim, H.S. Jung, H. Shin, and K.S. Hong, Improved Spectral Response of Sensitized Photoelectrodes with the Optical Modulation Layer, Electrochem. Commun., 2012, 15, p 29-33

    Article  Google Scholar 

  17. B. Peng, G. Jungmann, C. Jäger, D. Haarer, H.-W. Schmidt, and M. Thelakkat, Systematic Investigation of the Role of Compact TiO2 Layer in Solid State Dye-Sensitized TiO2 Solar Cells, Coord. Chem. Rev., 2004, 248, p 1479-1489

    Article  Google Scholar 

  18. S.M. Waita, B.O. Aduda, J.M. Mwabora, G.A. Niklasson, C.G. Granqvist, and G. Boschloo, Electrochemical Characterization of TiO2 Blocking Layers Prepared by Reactive DC Magnetron Sputtering, J. Electroanal. Chem., 2009, 637, p 79-83

    Article  Google Scholar 

  19. J.G. Lee, J.H. Cheon, H.S. Yang, D.K. Lee, and J.H. Kim, Enhancement of Photovoltaic Performance in Dye-Sensitized Solar Cells with the Spin-Coated TiO2 Blocking Layer, J. Nanosci. Nanotechnol., 2012, 12, p 6026-6030

    Article  Google Scholar 

  20. T.Y. Cho, S.G. Yoon, S.S. Sekhon, M.G. Kang, and C.H. Han, The Effect of a Sol-Gel Formed TiO2 Blocking Layer on the Efficiency of Dye-Sensitized Solar Cells, B. Korean Chem. Soc., 2011, 32, p 3629-3633

    Article  Google Scholar 

  21. J.F. Taylor, Spin coating: An Overview, Sony Chemicals Corp. of America, Mt. Pleasant, 2001

    Google Scholar 

  22. H. Kozuka, S. Takenaka, and S. Kimura, Nanoscale Radiative Striations of Sol-Gel-Derived Spin-Coating Films, Scr. Mater., 2001, 44, p 1807-1811

    Article  Google Scholar 

  23. K. Chen, Z. Lü, N. Ai, X. Huang, Y. Zhang, X. Ge, X. Xin, X. Chen, and W. Su, Fabrication and Performance of Anode-Supported YSZ Films by Slurry Spin Coating, Solid State Ion., 2007, 177, p 3455-3460

    Article  Google Scholar 

  24. J.-A. Jeong and H.-K. Kim, Thickness Effect of RF Sputtered TiO2 Passivating Layer on the Performance of Dye-Sensitized Solar Cells, Sol. Energ. Mater. Sol. C, 2011, 95, p 344-348

    Article  Google Scholar 

  25. J. Akedo, Room Temperature Impact Consolidation (RTIC) of Fine Ceramic Powder by Aerosol Deposition Method and Applications to Microdevices, J. Therm. Spray Technol., 2008, 17, p 181-198

    Article  Google Scholar 

  26. J. Akedo, Aerosol Deposition of Ceramic Thick Films at Room Temperature: Densification Mechanism of Ceramic Layers, J. Am. Ceram. Soc., 2006, 89, p 1834-1839

    Article  Google Scholar 

  27. D. Popovici and J. Akedo, Control of powder quality as a method of improving the dielectric properties of (Ba0.6,Sr0.4)TiO3 thick films fabricated by aerosol deposition method, Jpn. J. Appl. Phys., 2010, 49, p.09MA13-09MA13-5.

  28. S.M. Nam, N. Mori, H. Kakemoto, S. Wada, J. Akedo, and T. Tsurumi, Alumina Thick Films as Integral Substrates Using Aerosol Deposition Method, Jpn. J. Appl. Phys., 2004, 43, p 5414-5418

    Article  Google Scholar 

  29. F. Cao, H. Park, G. Bae, J. Heo, and C. Lee, Microstructure Evolution of Titanium Nitride Film During Vacuum Kinetic Spraying, J. Am. Ceram. Soc., 2013, 96(1), p 40-43

    Article  Google Scholar 

  30. D.M. Chun and S.H. Ahn, Deposition Mechanism of Dry Sprayed Ceramic Particles at Room Temperature Using a Nano-particle Deposition System, Acta Mater., 2011, 59, p 2693-2703

    Article  Google Scholar 

  31. D.-W. Lee, H.-J. Kim, Y.-H. Kim, Y.-H. Yun, and S.-M. Nam, Growth Process of α-Al2O3 Ceramic Films on Metal Substrates Fabricated at Room Temperature by Aerosol Deposition, J. Am. Ceram. Soc., 2011, 94(9), p 3131-3138

    Article  Google Scholar 

  32. A. Iwata and J. Akedo, Hexagonal to Cubic Crystal Structure Transformation During Aerosol Deposition of Aluminum Nitride, J. Crystal. Growth, 2005, 275, p e1269-e1273

    Article  Google Scholar 

  33. F. Cao, H. Park, J. Heo, J. Kwon, and C. Lee, Effect of Process Gas Flow on the Coating Microstructure and Mechanical Properties of Vacuum Kinetic-Sprayed TiN Layers, J. Therm. Spray Technol., 2013, 22(7), p 1109-1119

    Article  Google Scholar 

  34. K. Naoe, M. Nishiki, and A. Yumoto, Relationship Between Impact Velocity of Al2O3 Particles and Deposition Efficiency in Aerosol Deposition Method, J. Therm. Spray Technol., 2013, 22(8), p 1267-1274

    Article  Google Scholar 

  35. S.W. Lee, J.H. Noh, H.S. Han, D.K. Yim, D.H. Kim, J.-K. Lee, J.Y. Kim, H.S. Jung, and K.S. Hong, Nb-Doped TiO2: A New Compact Layer Material for TiO2 Dye-Sensitized Solar Cells, J. Phys. Chem. C, 2009, 113, p 6878-6882

    Article  Google Scholar 

  36. S.-Q. Fan, G.-J. Yang, C.-J. Li, G.-J. Liu, C.-X. Li, and L.-Z. Zhang, Characterization of Microstructure of Nano-TiO2 Coating Deposited by Vacuum Cold Spraying, J. Therm. Spray Technol., 2006, 15(4), p 513-517

    Article  Google Scholar 

  37. C.-J. Li and W.-Y. Li, Deposition Characteristics of Titanium Coating in Cold Spraying, Surf. Coat. Technol., 2003, 167, p 278-283

    Article  Google Scholar 

  38. B. Bills, M. Shanmugam, and M.F. Baroughi, Effects of Atomic Layer Deposited HfO2 Compact Layer on the Performance of Dye-Sensitized Solar Cells, Thin Solid Films, 2011, 519, p 7803-7808

    Article  Google Scholar 

  39. H. Park, H. Heo, F. Cao, J. Kwon, K. Kang, G. Bae, and C. Lee, Deposition Behavior and Microstructural Features of Vacuum Kinetic Sprayed Aluminum Nitride, J. Therm. Spray Technol., 2013, 22(6), p 882-891

    Article  Google Scholar 

  40. B.J. Choi, D.S. Jeong, and S.K. Kim, Resistive Switching Mechanism of TiO2 Thin Films Grown by Atomic-Layer Deposition, J. Appl. Phys., 2005, 98, p 033715-033724

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by a Grant from the National Research Foundation of Korea (NRF) funded by the Korean government (MEST) (NRF-2014R1A2A2A05007633).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhee Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heo, J., Sudhagar, P., Park, H. et al. Room Temperature Synthesis of Highly Compact TiO2 Coatings by Vacuum Kinetic Spraying to Serve as a Blocking Layer in Polymer Electrolyte-Based Dye-Sensitized Solar Cells. J Therm Spray Tech 24, 328–337 (2015). https://doi.org/10.1007/s11666-014-0204-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-014-0204-0

Keywords

Navigation