Skip to main content
Log in

Numerical Simulation of Minimal Average Bonding Strength to Suppress Rebounding in Cold Spraying Cu/Cu: A Preliminary Study

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this work, finite element simulations were performed to investigate the competition between bonding and rebounding when a Cu particle of 25 μm in diameter impinged Cu substrate. With the help of cohesive zone model, the trend of the minimal average bonding strength to suppress rebounding (MABSSR) was predicted as a function of initial velocity under certain conditions. Result shows, MABSSR has a nonlinear trend versus initial velocity under the conditions considered. If the real trend of MABSSR is similar to that observed, a hypothesis is presented to explain the critical deposition velocity. Finally, defects in the current work are discussed. Analysis shows the defects have no influence on predicting the overall trend of MABSSR in the current work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

MABSSR:

Minimal average bonding strength to suppress rebounding

D p :

Diameter of particle

σn :

Normal stress at one node

σs :

Shear stress at one node

NFLS :

Normal failure stress (input parameter)

SFLS :

Shear failure stress (input parameter)

δc :

Critical failure distance (input parameter in cohesive zone model)

RBSCDI:

Real bonding strength created during the impact

References

  1. A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, and V.M. Fomin, Cold Spray Technology, Elsevier, Amsterdam, 2006

    Google Scholar 

  2. V.K. Champagne, The Cold Spray Materials Deposition Process: Fundamentals and Applications, Woodhead Publishing Limited and CRC Press LLC, Cambridge, 2007

    Book  Google Scholar 

  3. M. Grujicic, C.L. Zhao, C. Tong, W.S. Derosset, and D. Helfritch, Analysis of the Impact Velocity of Powder Particles in the Cold-Gas Dynamic-Spray Process, Mater. Sci. Eng. A, 2004, 368(1-2), p 222-230

    Article  Google Scholar 

  4. T. Schmidt, F. Gartner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54(3), p 729-742

    Article  Google Scholar 

  5. J. Wu, H. Fang, S. Yoon, H. Kim, and C. Lee, The Rebound Phenomenon in Kinetic Spraying Deposition, Scripta Mater., 2006, 54(4), p 665-669

    Article  Google Scholar 

  6. M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, and D. Helfritch, Computational Analysis of the Interfacial Bonding Between Feed-Powder Particles and the Substrate in the Cold-Gas Dynamic-Spray Process, Appl. Surf. Sci., 2003, 219(3-4), p 211-227

    Article  Google Scholar 

  7. H. Assadi, F. Gartner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394

    Article  Google Scholar 

  8. M. Grujicic, C.L. Zhao, W.S. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 25(8), p 681-688

    Article  Google Scholar 

  9. G. Bae, Y. Xiong, S. Kumar, K. Kang, and C. Lee, General Aspects of Interface Bonding in Kinetic Sprayed Coatings, Acta Mater., 2008, 56(17), p 4858-4868

    Article  Google Scholar 

  10. V.K. Champagne, D. Helfritch, P. Leyman, S.G. Ahl, and B. Klotz, Interface Material Mixing Formed by the Deposition of Copper on Aluminum by Means of the Cold Spray Process, J. Therm. Spray Technol., 2005, 14(3), p 330-334

    Article  Google Scholar 

  11. A. Manap, T. Okabe, and K. Ogawa, Computer Simulation of Cold Sprayed Deposition Using Smoothed Particle Hydrodynamics, Procedia Eng., 2011, 10, p 1145-1150

    Article  Google Scholar 

  12. B. Yildirim, S. Mueftue, and A. Gouldstone, On Cohesion of Micron Scale Metal Particles in High Velocity Impact with a Metal Substrate, Proceedings of the ASME/STLE International Joint Tribology Conference2011, Oct. 24-26, 2011 (Los Angeles, CA), ASME, 2012, p 373-375

  13. J.O. Hallquist, LS-DYNA Keyword User’s Manual, Livermore Software Technology Corporation, Livermore, CA, 2009

    Google Scholar 

  14. B. Yildirim, S. Muftu, and A. Gouldstone, Modeling of High Velocity Impact of Spherical Particles, Wear, 2011, 270(9-10), p 703-713

    Article  Google Scholar 

  15. M.A. Meyers, Dynamic Behavior of Materials, Wiley-Interscience publication, New York, 1994, p 126-135

    Book  Google Scholar 

  16. G.R. Johnson and W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proceedings of the 7th International Symposium on Ballistics, The Hague, Netherlands: International Ballistics Committee, 1983, p 541-547

  17. P.J. Blau, Friction, Lubrication, and Wear Technology, Chap. 1.2, ASM Handbook, 10th edn, ASM International, Materials Park, 1992

  18. T. Schmidt, “Kaltgasspritzen: Eine Analyse Des Materialverhaltens Beim Partikelaufprall Und Die Daraus Abgeleitete Prozessoptimierung,” Ph.D. Thesis, Helmut Schmidt University, 2007

  19. S. Bala and J. Day, General Guidelines for Crash Analysis in LS-DYNA, http://awg.lstc.com/tiki/tiki-download_file.php?fileId=18, Accessed Aug 19, 2014

  20. Oxygen-Free High Conductivity Copper, Soft, UNS C10200, http://matweb.com/search/DataSheet.aspx?MatGUID=a629b7c5643b44bfb25b9bba7f8140ab, Accessed Sept 30, 2013

  21. J.D. Clayton and J.J. Rencis, Numerical Integration in the Axisymmetric Finite Element Formulation, Adv. Eng. Softw., 2000, 31(2), p 137-141

    Article  Google Scholar 

  22. T. Erhart, Review of Solid Element Formulations in LS-DYNA, Forum 2011Entwicklerforum, Oct. 12-13, 2011 (Stuttgart, Germany), 2011

  23. S. Bala, Tiebreak Contact in LS-DYNA, 2007, http://blog2.d3view.com/tiebreak-contact-in-ls-dyna/, Accessed June 25, 2014

  24. J.T. Wang, Investigating Some Technical Issues on Cohesive Zone Modeling of Fracture, J. Eng. Mater. Technol., 2013, 135(1), p 011003

    Article  Google Scholar 

  25. M. Elices, G.V. Guinea, J. Gomez, and J. Planas, The Cohesive Zone Model: Advantages, Limitations and Challenges, Eng. Fract. Mech., 2002, 69(2), p 137-163

    Article  Google Scholar 

  26. G.T. Camacho and M. Ortiz, Computational Modelling of Impact Damage in Brittle Materials, Int. J. Solids Struct., 1996, 33(20-22), p 2899-2938

    Article  Google Scholar 

  27. N. Chandra, H. Li, C. Shet, and H. Ghonem, Some Issues in the Application of Cohesive Zone Models for Metal-Ceramic Interfaces, Int. J. Solids Struct., 2002, 39(10), p 2827-2855

    Article  Google Scholar 

  28. S. Yin, X. Wang, W. Li, H. Liao, and H. Jie, Deformation Behavior of the Oxide Film on the Surface of Cold Sprayed Powder Particle, Appl. Surf. Sci., 2012, 259, p 294-300

    Article  Google Scholar 

  29. T. Schmidt, H. Assadi, F. Gaertner, H. Richter, T. Stoltenhoff, H. Kreye, and T. Klassen, From Particle Acceleration to Impact and Bonding in Cold Spraying, J. Therm. Spray Technol., 2009, 18(5-6), p 794-808

    Article  Google Scholar 

  30. S. Bala, Best Practices for Modeling Recoverable Low Density Foams—by Example, 2006, http://blog2.d3view.com/best-practices-for-modeling-recoverable-low-density-foams-by-example/, Accessed June 25, 2014

  31. Y.V. Kurochkin, Y.N. Demin, and S.I. Soldatenkov, Demonstration of the Method of Cold Gasdynamic Spraying of Coatings, Chem. Pet. Eng., 2002, 38(3-4), p 245-248

    Article  Google Scholar 

  32. F.P. Bowden and E.H. Freitag, The Friction of Solids at Very High Speeds. 1. Metal on Metal. 2. Metal on Diamond, Proc. R. Soc. London, Ser. A, 1958, 248(1254), p 350

  33. F.P. Bowden and P.A. Persson, Deformation, Heating and Melting of Solids in High-Speed Friction, Proc. R. Soc. London, Ser. A, 1961, 260(1300), p 433-451

  34. E.A. Avallone, T. Baumeister, and A. Sadegh, Marks’ Standard Handbook for Mechanical Engineers (Standard Handbook for Mechanical Engineers), Chap. 3, 11th edn, McGraw-Hill, New York, 2006, p. 22

  35. F. Gartner, T. Stoltenhoff, C. Borchers, and H. Kreye, Microstructures and Key Properties of Cold-Sprayed and Thermally Sprayed Copper Coatings, Surf. Coat. Technol., 2006, 200(16-17), p 4947-4960

    Article  Google Scholar 

  36. F. Gartner, T. Stoltenhoff, J. Voyer, H. Kreye, S. Riekehr, and M. Kocak, Mechanical Properties of Cold-Sprayed and Thermally Sprayed Copper Coatings, Surf. Coat. Technol., 2006, 200(24), p 6770-6782

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully thank the Supercomputing Center of Chinese Academy of Sciences for offering computing resources. James Kennedy in LS-DYNA user group on Yahoo is gratefully acknowledged for offering advice about the choice between 3D simulation and 2D axisymmetric simulation as well as between different 3D meshes. The financial support of National Natural Science Foundation of China (No. 50971127) and (No. 50902131) are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianying Xiong.

Additional information

This article is an invited paper selected from presentations at the 2014 International Thermal Spray Conference, held May 21-23, 2014, in Barcelona, Spain, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Kong, L., Tao, Y. et al. Numerical Simulation of Minimal Average Bonding Strength to Suppress Rebounding in Cold Spraying Cu/Cu: A Preliminary Study. J Therm Spray Tech 24, 75–85 (2015). https://doi.org/10.1007/s11666-014-0150-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-014-0150-x

Keywords

Navigation