Skip to main content
Log in

Corrosion Behavior of an Abradable Seal Coating System

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

A novel NiTi/BN composite abradable coating and two traditional Ni/C and Ni/BN coatings were manufactured with NiAl as the bond layer using thermal spray technology and their corrosion behaviors were investigated. In salt spray corrosion testing of the Ni/BN coating, defective sites of the metal matrix were corroded preferentially. Simulated occlusion experiments and electrochemical tests indicated that migration of ions resulted in pH decrease and Cl enrichment in defects, and a more aggressive electrolyte led to a decrease of the corrosion potential of the metal inside defects but an increase of the corrosion current density, representing an autocatalytic corrosion process. Moreover, galvanic corrosion between the top and bond coatings of the abradable system was studied via the electrochemical technique. The results showed that, for the NiTi/BN, Ni/BN, and Ni/graphite coatings with a NiAl bond coating, current flow was generated between the anode and cathode. The NiTi/BN coating acted as the cathode due to its passivation, while the Ni/BN and Ni/graphite coatings acted as the anode because of their lower corrosion potential compared with the NiAl coating. The anode suffered serious corrosion damage due to galvanic corrosion, while the cathode corroded only slightly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.A. Clegg and M.H. Mehta, NiCrAl/Bentonite Thermal Spray Powder for High Temperature Abradable Seals, Surf. Coat. Technol., 1988, 34, p 69-77

    Article  Google Scholar 

  2. J. Stringer and M.B. Marshall, High Speed Wear Testing of an Abradable Coating, Wear, 2012, 294-295, p 257-263

    Article  Google Scholar 

  3. J.T. Demasi and D.K. Gupta, Protective Coatings in the Gas Turbine Engine, Surf. Coat. Technol., 1994, 68-69, p 1-9

    Article  Google Scholar 

  4. R.E. Johnston, Mechanical Characterization of AlSi-hBN, NiCrAl-Bentonite, and NiCrAl-Bentonite-hBN Freestanding Abradable Coatings, Surf. Coat. Technol., 2011, 205, p 3268-3273

    Article  Google Scholar 

  5. M. Dorfman and U. Erning, Gas Turbines Use Abradable Coatings for Clearance Control Seals, Sealing Technol., 2002, 2002, p 7-8

    Article  Google Scholar 

  6. H.I. Faraoun, J.L. Seichepine, C. Coddet, H. Aourag, J. Zwick, N. Hopkins, D. Sporer, and M. Hertter, Modelling Route for Abradable Coatings, Surf. Coat. Technol., 2006, 200, p 6578-6582

    Article  Google Scholar 

  7. H.I. Faraoun, T. Grosdidier, J.L. Seichepine, D. Goran, H. Aourag, C. Coddet, J. Zwick, and N. Hopkins, Improvement of Thermally Sprayed Abradable Coating by Microstructure Control, Surf. Coat. Technol., 2006, 201, p 2303-2312

    Article  Google Scholar 

  8. C.G. Xu, L.Z. Du, B. Yang, and W.G. Zhang, The Effect of Al Content on the Galvanic Corrosion Behavior of Coupled Ni/Graphite and Ni-Al Coating, Corros. Sci., 2011, 53, p 2066-2074

    Article  Google Scholar 

  9. B. Lei, M. Li, Z.X. Zhao, L. Wang, Y. Li, and F.H. Wang, Corrosion Mechanism of an Al-BN Abradable Seal Coating System, Corros. Sci., 2014, 79, p 198-205

    Article  Google Scholar 

  10. C.G. Xu, L.Z. Du, B. Yang, and W.G. Zhang, Study on Salt Spray Corrosion of Ni-Graphite Abradable Coating with 80Ni20Al and 96NiCr-4Al as Bonding Layers, Surf. Coat. Technol., 2011, 205, p 4154-4161

    Article  Google Scholar 

  11. F.C. Walsh, P.D. León, C. Kerr, S. Court, and B.D. Barker, Electrochemical Characterisation of the Porosity and Corrosion Resistance of Electrochemically Deposited Metal Coatings, Surf. Coat. Technol., 2008, 202, p 5092-5102

    Article  Google Scholar 

  12. J.M. Zhao and Y. Zuo, The Effect of Molybdate and Dichromate Anions on Pit Propagation of Mild Steel in Bicarbonate Solution Containing Cl, Corros. Sci., 2002, 44, p 2119-2130

    Article  Google Scholar 

  13. W.Z. Ouyang, C.C. Xu, L.J. Yue, and F. Wang, A Study of Localized Corrosion within Occluded Cells on a Simulated Cast Iron Artifact in Chloride Solution, Anti-Corros. Methods Mater., 2004, 50, p 259-265

    Google Scholar 

  14. W. Batista, A.M.T. Louvisse, O.R. Mattos, and L. Sathler, The Electrochemical Behavior of Incoloy800 and AISI304 Steel in Solutions That Are Similar to Those within Occluded Corrosion Cells, Corros. Sci., 1988, 28, p 759-768

    Article  Google Scholar 

  15. J.Y. Zuo, P. Marcel, C.C. Xu, and Y.P. Liu, Kinetic and Thermodynamic Behavior Inside Occluded Corrosion Cells Interpreted by Potential/pH Diagrams, Corros. Sci., 1989, 29, p 557-566

    Article  Google Scholar 

  16. Y. Gan, Y. Li, and H.C. Lin, Experimental Studies on the Local Corrosion of Low Alloy Steels in 3.5% NaCl, Corros. Sci., 2001, 43, p 397-411

    Article  Google Scholar 

  17. A. Lekatou, D. Zois, A.E. Karantzalis, and D. Grimanelis, Electrochemical Behavior of Cermet Coatings with a Bond Coat on AI7075: Pseudo Passivity, Localized Corrosion and Galvanic Effect Considerations in a Saline Environment, Corros. Sci., 2010, 52, p 2616-2653

    Article  Google Scholar 

  18. G.Z. Xie, J.X. Zhang, Y.J. Lu, K.Y. Wang, X.Y. Mo, and P.H. Lin, Effect of Laser Remelting on Corrosion Behavior of Plasma-Sprayed Ni-Coated WC Coatings, Mater. Sci. Eng. A, 2007, 460-461, p 351-356

    Article  Google Scholar 

  19. J.W. Oldfield, Test Techniques for Pitting and Crevice Corrosion Resistance of Stainless Steels and Nickel-Based Alloys in Chloride-Containing Environments, Int. Mater. Rev., 1987, 32, p 153-172

    Article  Google Scholar 

  20. W.M. Zhao, Y. Wang, L.X. Dong, K.Y. Wu, and J. Xue, Corrosion Mechanism of NiCrBSi Coatings Deposited by HVOF, Surf. Coat. Technol., 2005, 190, p 293-298

    Article  Google Scholar 

  21. W.A. Badawy, F.M. Al-Kharafi, and J.R. Al-Ajmi, Electrochemical Behavior of Cobalt in Aqueous Solution of Different pH, J. Appl. Electrochem., 2000, 30, p 693-704

    Article  Google Scholar 

  22. L.Y. Qin, J.S. Lian, and Q. Jiang, Effect of Grain Size on Corrosion Behavior of Electrodeposited Bulk Nanocrystalline Ni, Trans. Nonferrous Met. Soc., 2010, 30, p 82-89

    Article  Google Scholar 

  23. J.A. Bolzàn, E.A. Jàuregui, and A.J. Arvia, The Hydrolysis of Ni(II) Ion in NaClO4 Solutions, Electrochim. Acta, 1963, 8(11), p 841-845

    Article  Google Scholar 

  24. K. Funatsu, H. Fukuda, R. Takei, J. Umeda, and K. Kondoh, Quantitative Evaluation of Initial Galvanic Corrosion Behavior of CNTs Reinforced Mg-Al Alloy, Adv. Powder Technol., 2013, 24, p 833-837

    Article  Google Scholar 

  25. K. Alvarez, S.K. Hyun, H. Tsuchiya, S. Fujimoto, and H. Nakajima, Corrosion Behavior of Lotus-Type Porous High Nitrogen Nickel-Free Stainless Steels, Corros. Sci., 2008, 50, p 183-193

    Article  Google Scholar 

  26. K.H.W. Seah, R. Thampuran, and S.H. Teoh, The Influence of Pore Morphology on Corrosion, Corros. Sci., 1998, 40, p 547-556

    Article  Google Scholar 

  27. Z. Zeng, N. Sakoda, T. Tajiri, and S. Kuroda, Structure and Corrosion Behavior of 316L Stainless Steel Coatings Formed by HVAF Spraying with and without Sealing, Surf. Coat. Technol., 2008, 203, p 284-290

    Article  Google Scholar 

  28. A.B.M. Mujibur Rahman, S. Kumar, and A.R. Gerson, Galvanic Corrosion of Laser Weldments of AA 6061 Aluminum Alloy, Corros. Sci., 2007, 49, p 4339-4351

    Article  Google Scholar 

  29. J. Idrac, G. Mankowski, G. Thompson, P. Skeldon, Y. Kihn, and C. Blanc, Galvanic Corrosion of Aluminum-Copper Model Alloys, Electrochim. Acta, 2007, 52, p 7633-7926

    Google Scholar 

  30. Z.F. Yin, M.L. Yan, Z.Q. Bai, and W.J. Zhou, Galvanic Corrosion Associated with SM 80SS Steel and Ni-Based Alloy G3 Couples in NaCl Solution, Electrochim. Acta, 2008, 53, p 6285-6292

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weigang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Xu, C., Lan, H. et al. Corrosion Behavior of an Abradable Seal Coating System. J Therm Spray Tech 23, 1019–1028 (2014). https://doi.org/10.1007/s11666-014-0115-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-014-0115-0

Keywords

Navigation