Skip to main content
Log in

Processing Conditions Affecting Grain Size and Mechanical Properties in Nanocomposites Produced via Cold Spray

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Cold spray is a coating technology based on aerodynamics and high-speed impact dynamics. In this process, spray particles (usually 1-50 μm in diameter) are accelerated to a high velocity (typically 300-1200 m/s) by a high-speed gas (pre-heated air, nitrogen, or helium) flow that is generated through a convergent-divergent de Laval-type nozzle. A coating is formed through the intensive plastic deformation of particles impacting on a substrate at a temperature below the melting point of the spray material. In the present paper the main processing parameters affecting the microstructural and mechanical behavior of metal-metal cold spray deposits are described. The effect of process parameters on grain refinement and mechanical properties were analyzed for composite particles of Al-Al2O3, Ni-BN, Cu-Al2O3, and Co-SiC. The properties of the formed nanocomposites were compared with those of the parent materials sprayed under the same conditions. The process conditions, leading to a strong grain refinement with an acceptable level of the deposit mechanical properties such as porosity and adhesion strength, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O. Nooririnah, A.Y. Khalil, M.S. Aludin, A. Rohana, and R.R. Zuraidah, Overview Potential Applications of Cold Spray Process for Aviation Industry in Malaysia, Adv. Mater. Res., 2013, 701, p 375-377

    Article  Google Scholar 

  2. R. Jones, M. Krishnapillai, K. Cairns, and N. Matthews, Application of Infrared Thermography to Study Crack Growth and Fatigue Life Extension Procedures, Fat. Fract. Eng. Mater. Struct., 2010, 33(12), p 871-884

    Article  Google Scholar 

  3. A. Sova, D. Pervushin, and I. Smurov, Development of Multimaterial Coatings by Cold Spray and Gas Detonation Spraying, Surf. Coat. Technol., 2010, 205, p 1108-1114

    Article  Google Scholar 

  4. M. Yandouzi, H. Bu, M. Brochu, and B. Jodoin, Nanostructured Al-Based Metal Matrix Composite Coating Production by Pulsed Gas Dynamic Spraying Process, J. Therm. Spray Technol., 2012, 21(3-4), p 609-619

    Article  Google Scholar 

  5. R. Arrabal, A. Pardo, M.C. Merino, M. Mohedano, P. Casajús, and E. Matykina, Corrosion of Magnesium-Aluminum Alloys with Al-11Si/SiC Thermal Spray Composite Coatings in Chloride Solution, J. Therm. Spray Technol., 2011, 20(3), p 569-579

    Article  Google Scholar 

  6. L. Kong, B. Lu, X. Cui, H. Du, T. Li, and T. Xiong, Oxidation Behavior of TiAl3/Al Composite Coating on Orthorhombic-Ti2AlNb Based Alloy at Different Temperatures, J. Therm. Spray Technol., 2010, 19(3), p 650-656

    Article  Google Scholar 

  7. A.S.M. Ang, C.C. Berndt, and P. Cheang, Deposition Effects of WC Particle Size on Cold Sprayed WC-Co Coatings, Surf. Coat. Technol., 2011, 205, p 3260-3267

    Article  Google Scholar 

  8. R.S. Lima, J. Karthikeyan, C.M. Kay, J. Lindemann, and C.C. Berndt, Microstructural Characteristics of Cold-Sprayed Nanostructured WC-Co Coatings, Thin Solid Films, 2002, 416, p 129-135

    Article  Google Scholar 

  9. H.-K. Kang and S.B. Kang, Tungsten/Copper Composite Deposits Produced by a Cold Spray, Scr. Mater., 2003, 49, p 1169-1174

    Article  Google Scholar 

  10. P. Sudharshan Phani, V. Vishnukanthan, and G. Sundararajan, Effect of Heat Treatment on Properties of Cold Sprayed Nanocrystalline Copper Alumina Coatings, Acta Mater., 2007, 55, p 4741-4751

    Google Scholar 

  11. X.-T. Luo and C.-J. Li, Thermal Stability of Microstructure and Hardness of Cold-Sprayed cBN/NiCrAl Nanocomposite Coating, J. Therm. Spray Technol., 2012, 21(3-4), p 578-585

    Article  Google Scholar 

  12. X.-T. Luo, G.-J. Yang, and C.-J. Li, Multiple Strengthening Mechanisms of Cold-Sprayed cBNp/NiCrAl Composite Coating, Surf. Coat. Technol., 2011, 205, p 4808-4813

    Article  Google Scholar 

  13. M. Bashirzadeh, F. Azarmi, C.P. Leither, and G. Karami, Investigation on Relationship Between Mechanical Properties and Microstructural Characteristics of Metal Matrix Composites Fabricated by Cold Spraying Technique, Appl. Surf Sci., 2013, 275, p 208-216

    Article  Google Scholar 

  14. ASTM C633-13, Standard Test Method for Adhesion or Cohesion Strength of Thermal Spray Coatings, Book of Standards Volume: 02.05.

  15. P. Cavaliere and E. Evangelista, Isothermal Forging of Metal Matrix Composites: Recrystallization Behaviour by Means of Deformation Efficiency, Compos. Sci. Technol., 2006, 66(2), p 357-362

    Article  Google Scholar 

  16. M. Yandouzi, L. Ajdelsztajn, and B. Jodoin, WC-Based Composite Coatings Prepared by the Pulsed Gas Dynamic Spraying Process: Effect of the Feedstock Powders, Surf. Coat. Technol., 2008, 202, p 3866-3877

    Article  Google Scholar 

  17. W.-Y. Li, C. Zhang, H. Liao, J. Li, and C. Coddet, Characterizations of Cold-Sprayed Nickel-Alumina Composite Coating with Relatively Large Nickel-Coated Alumina Powder, Surf. Coat. Technol., 2008, 202, p 4855-4860

    Article  Google Scholar 

  18. O. Meydanoglu, B. Jodoin, and E.S. Kayali, Microstructure, Mechanical Properties and Corrosion Performance of 7075 Al Matrix Ceramic Particle Reinforced Composite Coatings Produced by the Cold Gas Dynamic Spraying Process, Surf. Coat. Technol., 2013, doi:10.1016/j.surfcoat.2013.07.020

    Google Scholar 

  19. P. Cavaliere and A. Silvello, Processing Parameters Affecting Cold Spay Coatings Performances, Int. J. Adv. Manuf. Technol., 2013, doi:10.1007/s00170-013-5465-0

    Google Scholar 

  20. Q. Wang, N. Birbilis, and M.X. Zhang, On the Formation of a Diffusion Bond from Cold-Spray Coatings, Met. Trans., 2012, A43(5), p 1395-1399

    Google Scholar 

  21. H.X. Hu, S.L. Jiang, Y.S. Tao, T.Y. Xiong, and Y.G. Zheng, Cavitation Erosion and Jet Impingement Erosion Mechanism of Cold Sprayed Ni-Al2O3 Coating, Nucl. Eng. Des., 2011, 241, p 4929-4937

    Article  Google Scholar 

  22. M. Grujicic, C.L. Zhao, W.S. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particle/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 25, p 681-688

    Article  Google Scholar 

  23. T. Hussain, Cold Spraying of Titanium: A Review of Bonding Mechanisms, Microstructure and Properties, Key Eng. Mater., 2013, 533, p 53-90

    Article  Google Scholar 

  24. G. Bae, J.-I. Jang, and C. Lee, Correlation of Particle Impact Conditions with Bonding, Nanocrystal Formation and Mechanical Properties in Kinetic Sprayed Nickel, Acta Mater., 2012, 60(8), p 3524-3535

    Article  Google Scholar 

  25. M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, and D. Helfritch, Computational Analysis of the Interfacial Bonding Between Feed Powder Particles and the Substrate in the Cold-Gas Dynamic-Spray Process, Appl. Surf. Sci., 2003, 219, p 211-327

    Article  Google Scholar 

  26. A. Sova, A. Papyrin, and I. Smurov, Influence of Ceramic Powder Size on Process of Cermet Coating Formation by Cold Spray, J. Therm. Spray Technol., 2009, 18(4), p 633-641

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Cavaliere.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavaliere, P., Perrone, A. & Silvello, A. Processing Conditions Affecting Grain Size and Mechanical Properties in Nanocomposites Produced via Cold Spray. J Therm Spray Tech 23, 1089–1096 (2014). https://doi.org/10.1007/s11666-014-0093-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-014-0093-2

Keywords

Navigation