Skip to main content
Log in

Development of Particle Interface Bonding in Thermal Spray Coatings: A Review

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Thermal spray ceramic coatings deposited following the conventional routine exhibit a typical lamellar structure with a limited interface bonding ratio. The bonding between particles in the coating dominates coating properties and performance. In this review paper, the bonding formation at the interface between thin lamellae in the coating is examined. The effect of spray parameters on the bonding ratio is presented to reveal the main droplet parameters controlling bonding formation, which reveals that the temperature of the spray particle rather than its velocity dominates the bonding formation. The limitation to increase significantly the ceramic particle temperature inherent to the thermal spray process leads to the observation of a maximum bonding ratio of about 32%, while through controlling the surface temperature of the coating prior to molten droplet impact, the bonding at the lamellar interface can be significantly increased. Consequently, it is shown that with the proper selection of deposition conditions and control of the deposition temperature, the bonding ratio of ceramic deposits can be altered from a maximum of 32% for a conventional deposit to a maximum of 100%. Such wide adjustability of the lamellar bonding opens new possibilities for using thermal spray coatings in various applications requiring different microstructures and properties. The examination of recent studies shows that the bonding control makes it possible to fabricate porous deposits through surface-molten particles. Such an approach could be applied for the fabrication of porous materials, the deposition of high temperature abradable ceramic coatings, and for forming functional structured surfaces, such as a surface with super-hydrophobicity or a solid oxide fuel cell cathode interface with high specific surface area and high catalytic performance. Furthermore, complete interface bonding leads to crystalline structure control of individual splats through epitaxial grain growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. J. Bisson, C. Moreau, M. Dorfman, C. Dambra, and J. Mallon, Influence of Hydrogen on the Microstructure of Plasma-Sprayed Yttria-Stabilized Zirconia Coatings, J. Therm. Spray Technol., 2005, 14, p 85-90

    Article  Google Scholar 

  2. C.-J. Li and A. Ohmori, Relationship between the Structure and Properties of Thermally Sprayed Deposits, J. Thermal Spray Technol., 2002, 11, p 365-374

    Article  CAS  Google Scholar 

  3. R. McPherson, A Model for the Thermal Conductivity of Plasma-Sprayed Ceramic Coatings, Thin Solid Films, 1984, 112, p 89-95

    Article  CAS  Google Scholar 

  4. Y. Li, C.-J. Li, G.-J. Yang, and C.-X. Li, Relation Between Microstructure and Thermal Conductivity of Plasma-Sprayed 8YSZ Coating, Int. J. Mod. Phys. B, 2010, 24(15-16), p 3017-3022

    Article  CAS  Google Scholar 

  5. C.-J. Li, C.-X. Li, and M. Wang, Effect of Spray Parameters on the Electrical Conductivity of Plasma-Sprayed La1−xSrxMnO3 Coating for the Cathode of SOFCs, Surf. Coat. Technol., 2005, 198, p 278-282

    Article  CAS  Google Scholar 

  6. Y.Z. Xing, C.-J. Li, Q. Zhang, C.-X. Li, and G.-J. Yang, Influence of Microstructure on the Ionic Conductivity of Plasma-Sprayed Yttria-Stabilized Zirconia Deposits, J. Am. Ceram. Soc., 2008, 91(12), p 3931-3936

    Article  CAS  Google Scholar 

  7. R. McPherson and B.V. Shafer, Interlamellar Contact within Plasma-Sprayed Coatings, Thin Solid Films, 1982, 97, p 201-204

    Article  CAS  Google Scholar 

  8. C.-J. Li, A. Ohmori, and R. McPherson, The Relationship Between Microstructure and Young’s Modulus of Thermally Sprayed Ceramic Coatings, J. Mater. Sci., 1997, 32, p 997-1004

    Article  CAS  Google Scholar 

  9. Y.-Z. Xing, C.-J. Li, C.-X. Li, and G.-J. Yang, Relationship Between the Interlamellar Bonding and Properties of Plasma-sprayed Y2O3-ZrO2 Coatings, Thermal Spray 2009: Expanding Thermal Spray Performance to New Markets and Applications, B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, Ed., ASM International, Materials Park, OH, USA, 2009 CD-ROM, p 939-944

  10. S. Hao, C.-J. Li, and G.-J. Yang, Influence of Deposition Temperature on the Microstructures and Properties of Plasma-sprayed Al2O3 Coatings, J. Therm. Spray Technol., 2011, 20, p 160-169

    Article  CAS  Google Scholar 

  11. C.C. Berndt and R. McPherson, A Fracture Mechanics Approach to the Adhesion of Flame and Plasma Sprayed Coatings, Proceedings of the 9th International Thermal Spraying Conference, Hague, 1980, Nederland Inst. Voor Lastetechnik, 1980, p 310-316

  12. C.-J. Li, W.-Z. Wang, and Y. He, Dependency of Fracture Toughness of Plasma-Spray Al2O3 Coatings on Lamellar Structure, J. Therm. Spray Technol., 2004, 13, p 425-431

    Article  CAS  Google Scholar 

  13. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, John Wiley & Sons Ltd., Chichester, 1995

    Google Scholar 

  14. J.R. Davis, Handbook of Thermal Spray Technology, ASM International, Materials Park, OH, 2004

    Google Scholar 

  15. N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 12, p 280-284

    Article  Google Scholar 

  16. R. Henne, Solid Oxide Fuel Cells: A Challenge for Plasma Deposition Processes, J. Therm. Spray Technol., 2007, 16, p 381-403

    Article  CAS  Google Scholar 

  17. R. Hui, Z. Wang, O. Kesler, L. Rose, J. Jankovic, S. Yick, R. Maric, and D. Ghosh, Thermal Plasma Spraying for SOFCs: Applications, Potential Advantages, and Challenges, J. Power Sources, 2007, 170, p 308-323

    Article  CAS  Google Scholar 

  18. C.-J. Li, X.-J. Ning, and C.-X. Li, Effect of Densification Process on the Properties of Plasma-Sprayed YSZ Electrolyte coatings for Solid Oxide Fuel Cell, Surf. Coat. Technol., 2005, 190, p 60-64

    Article  CAS  Google Scholar 

  19. C.-J. Li, Y. Li, G.-J. Yang, and C.-X. Li, A Novel Plasma-Sprayed Durable Thermal Barrier Coating with the Well-Bonded YSZ Interlayer between Porous YSZ and Bond Coat, J. Therm. Spray Technol., 2012, 21(3-4), p 383-390

    Article  CAS  Google Scholar 

  20. Y.Z. Xing, Y. Li, C.-J. Li, C.X. Li, and G.J. Yang, Influence of Substrate Temperature on Microcracks Formation in Plasma-Sprayed Yttria-Stabilized Zirconia Splats, Key Eng. Mater., 2008, 373-374, p 69-72

    Article  CAS  Google Scholar 

  21. S. Hao, “Effect of Deposition Temperature on the Lamellar Bonding and Properties of APS Al2O3 Coatings,” Thesis, 2010, Xi’an Jiaotong University (in Chinese)

  22. Y.-Z. Xing, C.-J. Li, C.-X. Li, and G.-J. Yang, Influence of Through-Lamella Grain Growth on Ionic Conductivity of Plasma-Sprayed Yttria Stabilized Zirconia as an Electrolyte in Solid Oxide Fuel Cells, J. Power Sources, 2008, 176, p 31-38

    Article  CAS  Google Scholar 

  23. Y. Arata, A. Ohmori, and C.-J. Li, Study on the Structure of Plasma Sprayed Ceramic Coating by Using Copper Electroplating, Proceedings of International Symposium on Advanced Thermal Spraying Technology and Allied Coatings (ATTAC’88), Japan High Temperature Society, Osaka, 1988, p 205-210

  24. A. Ohmori and C.-J. Li, Quantitative Characterization of the Structure of Plasma Sprayed Al2O3 Coating by Using Copper Electroplating, Thin Solid Films, 1991, 201, p 241-252

    Article  CAS  Google Scholar 

  25. Y. Arata, A. Ohmori, and C.-J. Li, Characteristics of Metal Electroplating to Plasma Sprayed Ceramic Coatings, Trans. Jpn. Weld. Res. Inst., 1987, 16, p 259-265

    CAS  Google Scholar 

  26. Y. Arata, A. Ohmori, and C.-J. Li, Electrochemical Method to Evaluate the Connected Porosity in Ceramic Coatings, Thin Solid Films, 1988, 56, p 315-325

    Article  Google Scholar 

  27. A. Ohmori, C.-J. Li, Y. Arata, K. Inoue, and N. Iwamoto, The Dependency of the Connected Porosity in Plasma-Sprayed Al2O3 Coatings on Microstructure, J. Jpn. High Temp. Soc., 1990, 16(Suppl), p 332-340 (in Japanese)

    CAS  Google Scholar 

  28. P. Bengtsson and T. Johannesson, Characterization of Microstructural Defects in Plasma-Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 1995, 4(3), p 245-251

    Article  CAS  Google Scholar 

  29. K. Niemi, P. Vuoristo, E.K. Kumpulainen, P. Sorsa, and T. Mäntylä, Recent Developments in the Characteristics of Thermally Sprayed Oxide Coatings, Proceedings of the 14th ITSC, A. Ohmori, Ed., Japan High Temperature Society, Kobe, 1995, p 687-692

  30. K. Moriya, W. Zhao, and A. Ohmori, Improvement of Plasma-sprayed Ceramic Coatings, Proceedings of the 14th ITSC, A. Ohmori, Ed., Japan High Temperature Society, Kobe, 1995, p 1017-1021

  31. K. Miyajima, N. Nomura, Y. Harada, and H. Nakahira, Refining of Sprayed Oxide Coating by Chemically Densifying Method, J. Jpn. High Temp. Soc., 1992, 18(Suppl), p 307-313 (in Japanese)

    CAS  Google Scholar 

  32. B.R. Marple, J. Voyer, and P. Béchard, Sol Infiltration and Heat Treatment of Alumina-Chromia Plasma-Sprayed Coatings, J. Eur. Ceram. Soc., 2001, 21(7), p 861-868

    Article  CAS  Google Scholar 

  33. C.-J. Li, G.-J. Yang, and A. Ohmori, Potential Strengthening of Erosion Performance of Plasma-Sprayed Al2O3 Coating by Adhesives Impregnation, J. Mater. Sci. Lett., 2003, 22, p 1499-1501

    Article  CAS  Google Scholar 

  34. G.-J. Yang, C.-J. Li, C.-X. Li, A. Ohmori, and K. Kondoh, Improvement of Adhesion and Cohesion in Plasma sprayed Ceramic Coatings by Heterogeneous Modification of Nonbonded Interface through High Strength Adhesive Infiltration, J. Therm. Spray Technol., 2012, doi:10.1007/s11666-012-9831-5

  35. C.-J. Li and W.-Z. Wang, Quantitative Characterization of Lamellar Microstructure of Plasma-Sprayed Alumina Coating by Visualization of Voids Distribution, Mater. Sci. Eng. A, 2004, 386, p 10-19

    Google Scholar 

  36. C.-J. Li, G.-J. Yang, and A. Ohmori, Relationship Between Particle Erosion and Lamellar Microstructure for Plasma Sprayed Alumina Coatings, Wear, 2006, 260, p 1166-1172

    Article  CAS  Google Scholar 

  37. A. Ohmori, C.-J. Li, and Y. Arata, Influence of Plasma Spray Conditions on the Structure of Al2O3 Coatings, Trans. Jpn. Weld. Res. Inst., 1990, 19, p 259-270

    CAS  Google Scholar 

  38. W.-Z. Wang, C.-J. Li, and K. Sonoya, Study of Lamellar Microstructure of Plasma-Sprayed ZrO2-8wt.%Y2O3 Coatings, Tagungsband Conference Proceedings (2005 Int. Thermal Spray Conf.), E. Lugscheider, Ed., May 2-5 (Bussel, Switzerland), German Welding Research Institute, Germany, 2005, p 1506-1510

  39. C.-J. Li, A. Ohmori, and Y. Arata, Effect of Spray Methods on the Lamellar Structure of Al2O3 Coatings, Thermal Spray, Current Status and Future Trends, A. Ohmori, Ed., Japan High Temperature Society, 1995, p 501-506

  40. C.-J. Li and A. Ohmori, The Lamellar Structure of a Detonation Gun Sprayed Al2O3 Coating, Surf. Coat. Technol., 1996, 82, p 254-258

    Article  CAS  Google Scholar 

  41. A. Ohmori, C.-J. Li and Y. Arata, Structure of Plasma-Sprayed Alumina Coatings Revealed by Using Copper Electroplating, Proceedings of 4th National Thermal Spray Conference, 12-16 May 1991 (Pittsburgh, USA), ASM International, 1992, p 105-113

  42. W.Z. Wang, “Quantitative Characterization of Lamellar Microstructure of Plasma-Sprayed Coatings and Relationship Between Lamellar Microstructure and Properties of Coatings,” Ph.D Thesis, 2004, Xi’an Jiaotong University (In Chinese)

  43. P. Fauchais, M. Vardelle, A. Vardelle, and J.F. Coudert, Plasma Spraying of Ceramic Particles in Argon-Hydrogen D.C. Plasma Jets: Modeling and Measurements of Particles in Flight Correlation with Thermophysical Properties of Sprayed Layer, Metall. Trans., 1989, 20B, p 263-276

    CAS  Google Scholar 

  44. R. McPherson and P. Cheang, Microstructural Analysis of Ni-Al Plasma-Sprayed Coating, Proceedings of the 12th ITSC, British Welding Society, 1989, p 17-1

  45. S. Kuroda and S. Kitahara, Effect of Spray Conditions on the Pore Structure and Quenching Stress in Plasma Sprayed Coating, Thermal Spray, Current Status and Future Trends, A. Ohmori, Ed., Japan High Temperature Society, 1995, p 489-494

  46. C. Takahashi and T. Senda, On the Pore Structure of Plasma Sprayed Films, Thermal Spray, Current Status and Future Trends, A. Ohmori, Ed., Japan High Temperature Society, 1995, p 921-926

  47. S. Boire-Lavigne, C. Moreau, and R.G. Saint-Jacques, The Relationship Between the Microstructure and Thermal Diffusivity of Plasma-Sprayed Tungsten Coating, J. Therm. Spray Technol., 1995, 4(3), p 261-267

    Article  CAS  Google Scholar 

  48. J. M. Houben, Remarks Concerning a Rational Plasma for Thermal Spraying, In General Aspects of Thermal Spraying, Preprints of 9th International Thermal Spray Conference, 19-23 May 1980 (Hague), Nederlands Institut voor Lastechniek, 1980, p 143-154

  49. A. Kulkarni, J. Gutleber, S. Sampath, A. Goland, W.B. Lindquist, H. Herman, A.J. Allen, and B. Dowd, Studies of the Microstructure and Properties of Dense Ceramic Coatings Produced by High-Velocity Oxygen-Fuel Combustion Spraying, Mater. Sci. Eng., A, 2004, 369, p 124-137

    Article  Google Scholar 

  50. C.-J. Li and G.-J. Yang, Relationships Between Feedstock Structure, Particle Parameter, Coating Deposition, Microstructure and Properties in Thermally Sprayed Conventional and Nanostructured WC-Co, Int. J. Refrig. Met. Hard Mater., 2012, doi:10.1016/j.ijrmhm.2012.03.014

    Google Scholar 

  51. A. Vardelle, M. Vardelle, R. McPherson, and P. Fauchais, Study of the Influence of Particle Temperature and Velocity Distribution within a Plasma Jet Coating Formation, Proceedings of the 9th International Thermal Spraying Conference, Hague, 1980, Nederland Inst. Voor Lastetechnik, 1980, p 55-61

  52. M. Vardelle, A. Vardelle, and P. Fauchais, Study of the Trajectories and Temperatures of Powders in a D.C. Plasma Jet—Correlation with Alumina Sprayed Coatings, Proceedings of the 10th International Thermal Spraying Conference, Essen, May 1983, German Welding Society, 1983, p 88-92

  53. H.-D. Steffens, K.-H. Busse, and M. Schneider, Spray Particle Behavior in a Low Pressure Plasma Jet, Advances in Thermal Spraying, Proceedings of the 11th International Thermal Spray Conference, Canada, Welding Institute of Canada, 1986, p 49-59

  54. R. Kawase, H. Nakajima, K. Maehara, M. Korama, and H. Abe, Influence of Spray Parameters on Detonation Coating Properties, Proceedings of International Symposium on Advanced Thermal Spraying Technology and Allied Coatings (ATTAC’88), Japan High Temperature Society, Osaka, 1988, p 55-60

  55. C.-J. Li, Y.-Z. Xing, C.-X. Li, and G.-J. Yang, An Approach to Control the Interlamellar Bonding of Plasma-sprayed Y2O3-ZrO2 Coatings through Deposition Temperature, Thermal Spray 2009: Expanding Thermal Spray Performance to New Markets and Applications, B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, Ed., ASM International, Materials Park, OH, USA, 2009, CD-ROM, p 957-962

  56. E.-J. Yang, G.-J. Yang, X.-T. Luo, C.-J. Li, M. Takahashi, and S. Kuroda, Influence of Substrate Temperature on the Crystalline Structure Formation in Plasma-Sprayed Al2O3 Splats, 2013 (to be published)

  57. D.M. Gray, Y.C. Lau, C.A. Johnson, M.P. Borom, and W.A. Nelson, Thermal Barrier Coatings Having an Improved Columnar Microstructure, US Patent, 5830586, 1998

  58. I.-H. Jung, K.-K. Bae, M.-S. Yang, and S.-K. Ihm, A Study of the Microstructure of Yttria-Stabilized Zirconia Deposited by Inductively Coupled Plasma Spraying, J. Therm. Spray Technol., 2000, 9(4), p 463-477

    CAS  Google Scholar 

  59. H.B. Guo, R. Vaßen, and D. Stöver, Atmospheric Plasma Sprayed Thick Thermal Barrier Coatings with High Segmentation Crack Density, Surf. Coat. Technol., 2004, 186, p 353-363

    Article  CAS  Google Scholar 

  60. H.B. Guo, S. Kuroda, and H. Murakami, Segmented Thermal Barrier Coatings Produced by Atmospheric Plasma Spraying Hollow Powders, Thin Solid Films, 2006, 506-507, p 136-139

    Article  CAS  Google Scholar 

  61. H.B. Guo, H. Murakami, and S. Kuroda, Effect of Hollow Spherical Powder Size Distribution on Porosity and Segmentation Cracks in Thermal Barrier Coatings, J. Am. Ceram. Soc., 2006, 89(12), p 3797-3804

    Article  CAS  Google Scholar 

  62. A. Tricoire, A. Vardelle, P. Fauchais, F. Braillard, A. Malie, and P. Bengtsson, Macrocrack Formation in Plasma-sprayed YSZ TBCs When Spraying Thick Passes, High Temp. Mater. Process., 2005, 9, p 401-413

    Article  Google Scholar 

  63. M. Karger, R. Vassen, and D. Stover, Atmospheric Plasma Sprayed Thermal Barrier Coatings with High Segmentation Crack Densities: Spraying Process, Microstructure and Thermal Cycling Behavior, Surf. Coat. Technol., 2011, 206, p 16-23

    Article  CAS  Google Scholar 

  64. G.N. Heintze and S. Uematsu, Preparation and Structures of Plasma-Sprayed γ- and α-Al2O3 Coatings, Surf. Coat. Technol., 1992, 50, p 213-222

    Article  CAS  Google Scholar 

  65. G.-J. Yang, X.-H. Kang, C.-X. Li, and C.-J. Li, Influence of Deposition Temperature on the Splat Bonding and Mechanical Properties of Plasma-Sprayed Tungsten Coatings, Rare Met. Mater. Eng., 2012, 41(S1), p 394-398

    CAS  Google Scholar 

  66. E.-J. Yang, G.-J. Yang, X.-T. Luo, C.-J. Li, and M. Takahashi, Epitaxial Grain Growth during Splat Cooling of Alumina Droplets Produced by Atmospheric Plasma Spraying, J. Therm. Spray Technol., 2013, 22(2), doi:10.1007/s11666-012-9862-y

  67. T. Chraska and A.H. King, Transmission Electron Microscopy Study of Rapid Solidification of Plasma Sprayed Zirconia—Part I. First Splat Solidification, Thin Solid Films, 2001, 397, p 30-39

    Article  CAS  Google Scholar 

  68. X.-M. Wang, C.-J. Li, C.-X. Li, and G.-J. Yang, Microstructure and Electrochemical Behavior of a Structured Electrolyte/LSM-Cathode Interface Modified by Flame Spraying for Solid Oxide Fuel Cell Application, J. Therm. Spray Technol., 2010, 19(1-2), p 311-316

    Article  CAS  Google Scholar 

  69. E. Ivers-Tiffe, A. Weber, and D. Herbstritt, Materials and Technologies for SOFC-Components, J. Eur. Ceram. Soc., 2001, 21, p 1805-1811

    Article  Google Scholar 

  70. C.-J. Li, X.-M. Wang, C.-X. Li, and G.-J. Yang, Deposition of Surface-Melted YSZ Particles by Flame Spraying, Proceedings of ITSC2011, DVS, Hamburg, 2011, CD-ROM

  71. C.-X. Li, Z.-H. Song, Y. Zhang, C.-J. Li, and G.-J. Yang, Enhancement of SOFC Cathode Performance through Structured Electrolyte/Cathode Interface with ScSZ Convex Particle of High Electrical Conductivity, Presented as 18th International Conference on Solid State Ionics, Sept. 4-8, 2011, Warsaw, Poland

  72. B. Bhushan and Y. Chae Jung, Natural and Biomimetic Artificial Surfaces for Superhydrophobicity, Self-Cleaning, Low Adhesion, and Drag Reduction, Prog. Mater. Sci., 2011, 56, p 1-108

    Article  CAS  Google Scholar 

  73. B. Chen, C.-J. Li, T. Guo, and J.-T. Yao, Structured Surface with Super-Hydrophobicity through Surface-Molten Particle Deposition by Flame Spraying Assisted with Modification (to be published)

  74. B. Chen, C.-J. Li, G.-J. Yang, J.-T. Yao, H.-B. Huo, and C.-X. Li, Fabrication of Porous Molybdenum by Controlling Spray Particle State, J. Therm. Spray Technol., 2012, 21, p 1032-1045

    Article  CAS  Google Scholar 

  75. J. Zou, C.-J. Li, H.-B. Huo, B. Chen, C.-X. Li, and G.-J. Yang, Formation of Abradable Ceramic Coatings through Deposition of Semi-Molten Ceramic Particles by Flame Spray, Thermal Spray 2012: Proceedings from the International Thermal Spray Conference and Exposition, R.S. Lima, A. Agarwal, M.M. Hyland, Y.-C. Lau, C.-J. Li, A. McDonald, and F.-L. Toma, Ed., May 21-24, 2012 (Houston, Texas, USA), ASM International, 2012, p 126-130

  76. J.-T. Yao, C.-J. Li, G.-J. Yang, and C.-X. Li, Fabrication of Porous Stainless Steel Through Semi-Molten Spray Particles Deposition by Flame Spraying, Thermal Spray 2012: Proceedings from the International Thermal Spray Conference and Exposition, R.S. Lima, A. Agarwal, M.M. Hyland, Y.-C. Lau, C.-J. Li, A. McDonald, and F.-L. Toma, Ed., May 21-24, 2012 (Houston, Texas, USA), ASM International, 2012, p 681-685

Download references

Acknowledgments

The present project was supported by National Natural Science Foundation of China (Grant Nos. 50725101, 51171144) and National Basic Research Program (Grant No. 2012CB625104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Jiu Li.

Additional information

This article is an invited paper selected from presentations at the 2012 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Thermal Spray 2012: Proceedings of the International Thermal Spray Conference, Air, Land, Water, and the Human Body: Thermal Spray Science and Applications, Houston, Texas, USA, May 21-24, 2012, Basil R. Marple, Arvind Agarwal, Laura Filofteia-Toma, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and André McDonald, Ed., ASM International, Materials Park, OH, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, CJ., Yang, GJ. & Li, CX. Development of Particle Interface Bonding in Thermal Spray Coatings: A Review. J Therm Spray Tech 22, 192–206 (2013). https://doi.org/10.1007/s11666-012-9864-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-012-9864-9

Keywords

Navigation