Skip to main content
Log in

Effect of Deposition Rate on the Stress Evolution of Plasma-Sprayed Yttria-Stabilized Zirconia

Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The deposition rate plays an important role in determining the thickness, stress state, and physical properties of plasma-sprayed coatings. In this article, the effect of the deposition rate on the stress evolution during the deposition (named evolving stress) of yttria-stabilized zirconia coatings was systematically studied by varying the powder feed rate and the robot-scanning speed. The evolving stress during the deposition tends to increase with the increased deposition rate, and this tendency was less significant at a longer spray distance. In some cases, the powder feed rate had more significant influence on the evolving stress than the robot speed. This tendency can be associated with a deviation of a local deposition temperature at a place where sprayed particles are deposited from an average substrate temperature. At a further higher deposition rate, the evolving stress was relieved by introduction of macroscopic vertical cracks as well as horizontal branching cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. A.A. Kulkarni, A. Goland, H. Herman, A.J. Allen, J. Ilavsky, G.G. Long, C.A. Johnson, and J.A. Ruud, Microstructure-Property Correlations in Industrial Thermal Barrier Coatings, J. Am. Ceram. Soc., 2004, 87(7), p 1294-1300

    Article  CAS  Google Scholar 

  2. A. Vaidya, V. Sirinivasan, T. Streibl, M. Friis, W. Chi, and S. Sampath, Process Maps for Plasma Spraying of Yttria-Stabilized Zirconia: An Integrated Approach to Design, Optimization and Reliability, Mater. Sci. Eng. A, 2008, 497(1-2), p 239-253

    Article  Google Scholar 

  3. T. Yoshida, T. Okada, H. Hamatani, and H. Kumaoka, Integrated Fabrication Process for Solid Oxide Fuel Cells Using Novel Plasma Spraying, Plasma Sources Sci. Technol., 1992, 1(3), p 195-201

    Article  CAS  Google Scholar 

  4. K. Shinoda, Y. Tan, and S. Sampath, Powder Loading Effects of Yttria-Stabilized Zirconia in Atmospheric dc Plasma Spraying, Plasma Chem. Plasma Process., 2010, 30(6), p 761-778

    Article  CAS  Google Scholar 

  5. M. Friis, C. Persson, and J. Wigren, Influence of Particle In-flight Characteristics on the Microstructure of Atmospheric Plasma Sprayed Yttria Stabilized ZrO2, Surf. Coat. Technol., 2001, 141(2-3), p 115-127

    Article  CAS  Google Scholar 

  6. M. Prystay, P. Gougeon, and C. Moreau, Structure of Plasma-Sprayed Zirconia Coatings Tailored by Controlling the Temperature and Velocity of the Sprayed Particles, J. Therm. Spray Technol., 2001, 10(1), p 67-75

    Article  CAS  Google Scholar 

  7. K. Shinoda, H. Murakami, S. Kuroda, K. Takehara, and S. Oki, In Situ Visualization of Impacting Phenomena of Plasma-Sprayed Zirconia: From Single Splat to Coating Formation, J. Therm. Spray Technol., 2008, 17(5-6), p 623-630

    Article  CAS  Google Scholar 

  8. S. Sampath, V. Srinivasan, A. Valarezo, A. Vaidya, and T. Streibl, Sensing, Control, and in Situ Measurement of Coating Properties: An Integrated Approach Toward Establishing Process-Property Correlations, J. Therm. Spray Technol., 2009, 18(2), p 243-255

    Article  CAS  Google Scholar 

  9. J. Colmenares-Angulo, K. Shinoda, T. Wentz, W. Zhang, Y. Tan, and S. Sampath, On the Response of Different Particle State Sensors to Deliberate Process Variations, J. Therm. Spray Technol., 2011, 20(5), p 1035-1048

    Article  Google Scholar 

  10. S. Kuroda and T.W. Clyne, The Quenching Stress in Thermally Sprayed Coatings, Thin Solid Films, 1991, 200(1), p 49-66

    Article  CAS  Google Scholar 

  11. L. Bianchi, P. Lucchese, A. Denoirjean, P. Fauchais, and S. Kuroda, Evolution of Quenching Stress During Ceramic Thermal Spraying with Respect to Plasma Parameters, Advances in Thermal Spray Science & Technology, Proceedings of the 8th National Thermal Spray Conference, September 11-15, 1995 (Houston, TX), C.C. Berndt and S. Sampath, Ed., ASM International, Materials Park, OH, 1995, p 267-271

  12. A.C. Leger, G. Delluc, A. Haddadi, P. Fauchais, and F. Nardou, Residual Stress Measurement During Plasma Spraying of Alumina or Zirconia and Comparison with a 1D Model, High Temp. Mater. Process, 1998, 2, p 339-357

    CAS  Google Scholar 

  13. J. Matejicek and S. Sampath, In Situ Measurement of Residual Stresses and Elastic Moduli in Thermal Sprayed Coatings—Part 1: Apparatus and Analysis, Acta Mater., 2003, 51(3), p 863-872

    Article  CAS  Google Scholar 

  14. S. Sampath, X. Jiang, A. Kulkarni, J. Matejicek, D.L. Gilmore, and R.A. Neiser, Development of Process Maps for Plasma Spray: Case Study for Molybdenum, Mater. Sci. Eng. A, 2003, 348(1-2), p 54-66

    Article  Google Scholar 

  15. N. Elkaddah, J. McKelliget, and J. Szekely, Heat-Transfer and Fluid-Flow in Plasma Spraying, Metall. Trans. B, 1984, 15(1), p 59-70

    Article  Google Scholar 

  16. X.C. Zhang, M. Watanabe, H. Murakami, and S. Kuroda, Relaxation of Compressive Residual Stress in Grit Blasted Substrate Due to Annealing Effect During Preheating and Spray Processes, Proceedings of the 4th Asian Thermal Spray Conference, October 22-24, 2009 (Xi’an, China), 2009

  17. A. Valarezo, G. Bolelli, W.B. Choi, S. Sampath, V. Cannillo, L. Lusvarghi, and R. Rosa, Damage Tolerant Functionally Graded WC-Co/Stainless Steel HVOF Coatings, Surf. Coat. Technol., 2010, 205(7), p 2197-2208

    Article  CAS  Google Scholar 

  18. A. Valarezo, W.B. Choi, W. Chi, A. Gouldstone, and S. Sampath, Process Control and Characterization of NiCr Coatings by HVOF-DJ2700 System: A Process Map Approach, J. Therm. Spray Technol., 2010, 19(5), p 852-865

    Article  CAS  Google Scholar 

  19. S. Takeuchi, M. Ito, and K. Takeda, Modeling of Residual-Stress in Plasma-Sprayed Coatings—Effect of Substrate Temperature, Surf. Coat. Technol., 1990, 43-4(1-3), p 426-435

    Article  Google Scholar 

  20. S. Kuroda, T. Dendo, and S. Kitahara, Quenching Stress in Plasma-Sprayed Coatings and Its Correlation with the Deposit Microstructure, J. Therm. Spray Technol., 1995, 4(1), p 75-84

    Article  CAS  Google Scholar 

  21. Y.-Z. Xing, C.-J. Li, C.-X. Li, and G.-J. Yang, Relationship Between the Interlamellar Bonding and Properties of Plasma-Sprayed Y2O3-ZrO2 Coatings, Thermal Spray 2009: Proceedings of the International Thermal Spray Conference, B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, Ed., ASM International, Materials Park, OH, 2009, p 939-944

  22. V. Srinivasan, M. Friis, A. Vaidya, T. Streibl, and S. Sampath, Particle Injection in Direct Current Air Plasma Spray: Salient Observations and Optimization Strategies, Plasma Chem. Plasma Process., 2007, 27(5), p 609-623

    Article  CAS  Google Scholar 

  23. G. Dwivedi, T. Wentz, S. Sampath, and T. Nakamura, Assessing Process and Coating Reliability Through Monitoring of Process and Design Relevant Coating Properties, J. Therm. Spray Technol., 2010, 19(4), p 695-712

    Article  CAS  Google Scholar 

  24. G.G. Stoney, The Tension of Metallic Films Deposited by Electrolysis, Proc. R. Soc. Lond., 1909, A82(553), p 172-175

    Google Scholar 

  25. S.C. Sharma, Effect of Albite Particles on the Coefficient of Thermal Expansion Behavior of the Al6061 Alloy Composites, Metall. Mater. Trans. A, 2000, 31(3), p 773-780

    Article  Google Scholar 

  26. Y. Liu, T. Nakamura, V. Srinivasan, A. Vaidya, A. Gouldstone, and S. Sampath, Non-Linear Elastic Properties of Plasma-Sprayed Zirconia Coatings and Associated Relationships with Processing Conditions, Acta Mater., 2007, 55(14), p 4667-4678

    Article  CAS  Google Scholar 

  27. T. Nakamura and Y.J. Liu, Determination of Nonlinear Properties of Thermal Sprayed Ceramic Coatings Via Inverse Analysis, Int. J. Solids Struct., 2007, 44(6), p 1990-2009

    Article  CAS  Google Scholar 

  28. C.A. Klein, How Accurate Are Stoney’s Equation and Recent Modifications, J. Appl. Phys., 2000, 88(9), p 5487-5489

    Article  CAS  Google Scholar 

  29. S. Sampath, X.Y. Jiang, J. Matejicek, A.C. Leger, and A. Vardelle, Substrate Temperature Effects on Splat Formation, Microstructure Development and Properties of Plasma Sprayed Coatings Part I: Case Study for Partially Stabilized Zirconia, Mater. Sci. Eng. A, 1999, 272(1), p 181-188

    Article  Google Scholar 

  30. M.I. Boulos, P. Fauchais, and J. Heberlein, Understanding and Improving Your Thermal Spray Processes, a Lecture Note in International Thermal Spray Conference 2004. 2004, Osaka

  31. H.B. Xiong, L.L. Zheng, L. Li, and A. Vaidya, Melting and Oxidation Behavior of In-flight Particles in Plasma Spray Process, Int. J. Heat Mass Transf., 2005, 48(25-26), p 5121-5133

    Article  CAS  Google Scholar 

  32. R. Ghafouri-Azar, J. Mostaghimi, and S. Chandra, Modeling Development of Residual Stresses in Thermal Spray Coatings, Comput. Mater. Sci., 2006, 35(1), p 13-26

    Article  CAS  Google Scholar 

  33. R. Dhiman, A.G. McDonald, and S. Chandra, Predicting Splat Morphology in a Thermal Spray Process, Surf. Coat. Technol., 2007, 201(18), p 7789-7801

    Article  CAS  Google Scholar 

  34. D. Wroblewski, O. Ghosh, A. Lum, D. Willoughby, M. VanHout, K. Hogstrom, S.N. Basu, and M. Gevelber, Modeling and Parametric Analysis of Plasma Spray Particle State Distribution for Deposition Rate Control, ASME Conference Proceedings: ASME 2008 International Mechanical Engineering Congress and Exposition (Boston, MA), ASME, 2008, p 453-460

  35. V. Srinivasan and S. Sampath, Estimation of Molten Content of the Spray Stream from Analysis of Experimental Particle Diagnostics, J. Therm. Spray Technol., 2010, 19(1), p 476-483

    Article  CAS  Google Scholar 

  36. S.N. Basu, G. Ye, M. Gevelber, and D. Wroblewski, Microcrack Formation in Plasma Sprayed Thermal Barrier Coatings, Int. J. Refract. Met. Hard Mater., 2005, 23(4-6), p 335-343

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the GOALI program sponsored by the US National Science Foundation under award CMMI 1030492. Support through the Industrial Consortium for Thermal Spray Technology is gratefully acknowledged. We would like to appreciate Prof. Toshio Nakamura for his valuable comments on the stress measurement. We would also like to thank Mr. Travis Wentz and Riston Rocchio-Heller for their help in the spray experiments, and Dr. Brian Choi for SEM images. A part of experiment using a Triplex 200 Pro plasma torch was conducted at Sulzer Metco, Westbury, NY, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Shinoda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shinoda, K., Colmenares-Angulo, J., Valarezo, A. et al. Effect of Deposition Rate on the Stress Evolution of Plasma-Sprayed Yttria-Stabilized Zirconia. J Therm Spray Tech 21, 1224–1233 (2012). https://doi.org/10.1007/s11666-012-9807-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-012-9807-5

Keywords

Navigation