Skip to main content
Log in

Engineering the Microstructure of Solution Precursor Plasma-Sprayed Coatings

Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

This study examines the fundamental reactions that occur in-flight during the solution precursor plasma spraying (SPPS) of solutions containing Zr- and Y-based salts in water or ethanol solvent. The effect of plasma jet composition (pure Ar, Ar-H2 and Ar-He-H2 mixtures) on the mechanical break-up and thermal treatment of the solution, mechanically injected in the form of a liquid stream, was investigated. Observation of the size evolution of the solution droplets in the plasma flow by means of a laser shadowgraphy technique, showed that droplet break-up was more effective and solvent evaporation was faster when the ethanol-based solution was injected into binary or ternary plasma gas mixtures. In contrast with water-based solutions, residual liquid droplets were always detected at the substrate location. The morphology and structure of the material deposited onto stainless steel substrates during single-scan experiments were characterised by SEM, XRD and micro-Raman spectroscopy and were shown to be closely related to in-flight droplet behaviour. In-flight pyrolysis and melting of the precursor led to well-flattened splats, whereas residual liquid droplets at the substrate location turned into non pyrolysed inclusions. The latter, although subsequently pyrolysed by the plasma heat during the deposition of entire coatings, resulted in porous “sponge-like” structures in the deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. P. Fauchais, V. Rat, J.-F. Coudert, R. Etchart-Salas, and G. Montavon, Operating Parameters for Suspension and Solution Plasma-Spray Coatings, Surf. Coat. Technol., 2008, 202, p 4309-4317

    Article  CAS  Google Scholar 

  2. P. Fauchais, G. Montavon, and G. Bertrand, Influence of Powders on Thermal Spray Coating Structures: Recent Developments in Nano or Finely Structured Coatings and Some Safety Issues, Expanding Thermal Spray Performance to New Markets and Applications, Proceedings of the 2009 International Thermal Spray Conference, B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, G. Montavon, Ed., May 4-7, 2009 (Las Vegas, NV, USA), ASM International, 2009, p 799-817

  3. D. Chen, E.H. Jordan, and M. Gell, The Solution Precursor Plasma Spray Coatings: Influence of Solvent Type, Plasma Chem. Plasma Process., 2010, 30(1), p 111-119

    Article  Google Scholar 

  4. C.K. Muoto, E.H. Jordan, M. Gell, and M. Aindow, Identification of Desirable Precursor Properties for Solution Precursor Plasma Spray, J. Therm. Spray Technol., 2011, 20(4), p 802-816

    Article  CAS  Google Scholar 

  5. L. Pawlowski, Suspension and Solution Thermal Spray Coatings, Surf. Coat. Technol., 2009, 203, p 2807-2829

    Article  CAS  Google Scholar 

  6. M. Gell, E.H. Jordan, M. Teicholz, B.M. Cetegen, N.P. Padture, L. Xie, D. Chen, X. Ma, and J. Roth, Thermal Barrier Coatings Made by the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2008, 17(1), p 124-135

    Article  CAS  Google Scholar 

  7. H.P. Klug and L.E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley, New York, 1974, p 687

    Google Scholar 

  8. Y.H. Dong and P. Scardi, MarqX: A New Program for Whole-Powder-Pattern Fitting, J. Appl. Crystallogr., 2000, 33, p 184-189

    Article  CAS  Google Scholar 

  9. D.L.A. De Faria, S. Venâncio Silva, and M.T. de Oliveira, Raman Microspectroscopy of Some Iron Oxides and Oxyhydroxidess, J. Raman Spectrosc., 1997, 28, p 873-878

    Article  Google Scholar 

  10. J. Cai, C. Raptis, Y.S. Raptis, and E. Anastassakis, Temperature Dependence of Raman Scattering in Stabilized Cubic Zirconia, Phys. Rev. B, 1995, 51(1), p 201-209

    Article  CAS  Google Scholar 

  11. L. Bianchi, A. Denoirjean, F. Blein, and P. Fauchais, Microstructural Investigation of Plasma-Sprayed Ceramic Splats, Thin Solid Films, 1997, 299(1-2), p 125-135

    Article  CAS  Google Scholar 

  12. C. Veytizou, J.-F. Quinson, and A. Douy, Sol-Gel Synthesis Via an Aqueous Semi-Alkoxide Route and Characterization of Zircon Powders, J. Mater. Chem., 2000, 10, p 365-370

    Article  Google Scholar 

  13. RASMIN database, http://riodb.ibase.aist.go.jp/rasmin/E_ino_sea.htm, last accessed 16/05/2011

  14. J. Li, H. Huang, T. Ma, K. Eguchi, and T. Yoshida, Twin-Structured Yttria-Stabilized t’ Zirconia Coatings Deposited by Plasma Spray Physical Vapor Deposition: Microstructure and Mechanical Properties, J. Am. Ceram. Soc., 2007, 90(2), p 603-607

    Article  CAS  Google Scholar 

  15. M.A. Tamor and W.C. Vassel, Raman “Fingerprinting” of Amorphous Carbon Films, J. Appl. Phys., 1994, 76(6), p 3823-3830

    Article  CAS  Google Scholar 

  16. V. Rat and J.F. Coudert, A Simplified Analytical Model for D.C. Plasma Torch: Influence of Gas Properties and Experimental Conditions, J. Phys. D Appl. Phys., 2006, 39, p 4799-4807

    Article  CAS  Google Scholar 

  17. L. Xie, X. Ma, E.H. Jordan, N.P. Padture, D.T. Xiao, and M. Gell, Deposition of Thermal Barrier Coatings Using the Solution Precursor Plasma Spray Process, J. Mater. Sci., 2004, 39, p 1639-1646

    Article  CAS  Google Scholar 

  18. D. Chen, E.H. Jordan, and M. Gell, Effect of Solution Concentration on Splat Formation and Coating Microstructure Using the Solution Precursor Plasma Spray Process, Surf. Coat. Technol., 2008, 202(10), p 2132-2138

    Article  CAS  Google Scholar 

  19. R. Vert, P. Carles, E. Laborde, G. Mariaux, E. Meillot, A. Vardelle, Adhesion of Ceramic Coating on Thin and Smooth Metal Substrate: A Novel Approach with a Nanostructured Ceramic Interlayer, J. Therm. Spray Technol., 2012, 21(4)

  20. H. Podlesak, L. Pawlowski, R. d’Haese, J. Laureyns, T. Lampke, and S. Bellayer, Advanced Microstructural Study of Suspension Plasma Sprayed Hydroxyapatite Coatings, J. Therm. Spray Technol., 2010, 19(3), p 657-664

    Article  CAS  Google Scholar 

  21. E. Bemporad, G. Bolelli, V. Cannillo, D. De Felicis, R. Gadow, A. Killinger, L. Lusvarghi, J. Rauch, and M. Sebastiani, Structural Characterisation of High Velocity Suspension Flame Sprayed (HVSFS) TiO2 Coatings, Surf. Coat. Technol., 2010, 204(23), p 3902-3910

    Article  CAS  Google Scholar 

  22. D. Chen, E. Jordan, and M. Gell, Thermal and Crystallization Behavior of Zirconia Precursor Used in the Solution Precursor Plasma Spray Process, J. Mater. Sci., 2007, 42, p 5576-5580

    Article  CAS  Google Scholar 

  23. L.H.J. Wachters and N.A.J. Westerling, The Heat Transfer from a Hot Wall to Impinging Water Drops in the Spheroidal State, Chem. Eng. Sci., 1996, 21(11), p 1047-1056

    Google Scholar 

  24. K. VanEvery, M.J.M. Krane, R.W. Trice, H. Wang, W. Porter, M. Besser, D. Sordelet, J. Ilavsky, and J. Almer, Column Formation in Suspension Plasma-Sprayed Coatings and Resultant Thermal Properties, J. Therm. Spray Technol., 2011, 20(4), p 817-828

    Article  CAS  Google Scholar 

  25. A. Bacciochini, J. Ilavsky, G. Montavon, A. Denoirjean, F. Ben-Ettouil, S. Valette, P. Fauchais, and K. Wittmann-Teneze, Quantification of Void Network Architectures of Suspension Plasma-Sprayed (SPS) Yttria-Stabilized Zirconia (YSZ) Coatings Using Ultra-Small-Angle X-Ray Scattering (USAXS), Mater. Sci. Eng. A, 2010, 528(1), p 91-102

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Chazelas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertolissi, G., Chazelas, C., Bolelli, G. et al. Engineering the Microstructure of Solution Precursor Plasma-Sprayed Coatings. J Therm Spray Tech 21, 1148–1162 (2012). https://doi.org/10.1007/s11666-012-9789-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-012-9789-3

Keywords

Navigation