Skip to main content
Log in

Method and Process Development of Advanced Atmospheric Plasma Spraying for Thermal Barrier Coatings

  • Peer-Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Over the last few years, global economic growth has triggered a dramatic increase in the demand for resources, resulting in steady rise in prices for energy and raw materials. In the gas turbine manufacturing sector, process optimizations of cost-intensive production steps involve a heightened potential of savings and form the basis for securing future competitive advantages in the market. In this context, the atmospheric plasma spraying (APS) process for thermal barrier coatings (TBC) has been optimized. A constraint for the optimization of the APS coating process is the use of the existing coating equipment. Furthermore, the current coating quality and characteristics must not change so as to avoid new qualification and testing. Using experience in APS and empirically gained data, the process optimization plan included the variation of e.g. the plasma gas composition and flow-rate, the electrical power, the arrangement and angle of the powder injectors in relation to the plasma jet, the grain size distribution of the spray powder and the plasma torch movement procedures such as spray distance, offset and iteration. In particular, plasma properties (enthalpy, velocity and temperature), powder injection conditions (injection point, injection speed, grain size and distribution) and the coating lamination (coating pattern and spraying distance) are examined. The optimized process and resulting coating were compared to the current situation using several diagnostic methods. The improved process significantly reduces costs and achieves the requirement of comparable coating quality. Furthermore, a contribution was made towards better comprehension of the APS of ceramics and the definition of a better method for future process developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. R.A. Miller, History of Thermal Barrier Coatings for Gas Turbine Engines, Glenn Research Center, Cleveland, OH, 2009, NASA/TM-2009/215459

  2. J.F. Bisson, B. Gauthier, and C. Moreau, Effect of Plasma Fluctuations on In-Flight Particle Parameters, J. Therm. Spray Technol., 2003, 12(1), p 38-43

    Article  CAS  Google Scholar 

  3. J.F. Bisson and C. Moreau, Effect of Plasma Fluctuations on In-Flight Particle Parameters: Part II, J. Therm. Spray Technol., 2003, 12(2), p 258-264

    Article  CAS  Google Scholar 

  4. E. Nogues, P. Fauchais, M. Vardelle, and P. Grangner, Relation Between the Arc Root Fluctuations, the Cold Boundary Layer Thickness and the Particle Thermal Treatment, Thermal Spray 2007: Global Coating Solutions, May 14-16, 2007 (Beijing, China), ASM International, 2007, p 803-808

  5. M. Dzulko, G. Forster, K.D. Landes, J. Zierhut, and K. Nassenstein, Plasma Torch Developments, Thermal Spray 2005: Thermal Spray Connects: Explore Its Surfacing Potential, E. Lugscheider, Ed., May 2-4, 2005 (Basel, Switzerland), DVS, 2005, p 431-434

  6. A. Allimant and D. Billieres, New Conventional Plasma Gun with High Performance: ProPlasma HP, Thermal Spray 2010: Global Solutions for Future Application, May 3-5, 2010 (Singapore), DVS, 2010, p 43-47

  7. K. Bobzin, F. Ernst, J. Zwick, K. Richardt, D. Sporer, and R.J. Molz, Triplex Pro 200—Potential and Advanced Applications, Thermal Spray 2007: Global Coating Solutions, May 14-16, 2007 (Beijing, China), ASM International, 2007, p 723-726

  8. M. Dzulko, ‘Entwicklung des Mehranoden DC-Plasmagenerators “Delta Gun”’ [Development of a Multi-Anode DC Plasma “Delta Gun”], Ph.D. Thesis, Universität der Bundeswehr München, 2007

  9. J. Zierhut, P. Haslbeck, K.D. Landes, G. Barbezat, M. Muller, and M. Schutz, Triplex—An Innovative Three-Cathode Plasma Torch, Thermal Spray: Meeting the Challenges of the 21st Century, C. Coddet, Ed., May 25-29, 1998 (Nice, France), ASM International, 1998, p 1375-1379

  10. Z. Duan and J. Heberlein, Arc Instabilities in a Plasma Spray Torch, J. Therm. Spray Technol., 2002, 11(1), p 44-51

    Article  Google Scholar 

  11. Z. Duan and J. Heberlein, Anode Boundary Layer Effects in Plasma Spray Torches, Thermal Spray: Surface Engineering via Applied Research, C.C. Berndt, Ed., May 8-11, 2000 (Montreal, QC, Canada), ASM International, 2000, p 1-7

  12. L. Dorier, C. Hollenstein, A. Salito, M. Loch, and G. Barbezat, Influence of External Parameters on Arc Fluctuations in a F4 DC Plasma Torch Used for Thermal Spraying, Thermal Spray: Surface Engineering via Applied Research, C.C. Berndt, Ed., May 8-11, 2000 (Montreal, QC, Canada), ASM International, 2000, p 37-43

  13. S. Mihm, “Modifizierte Düsenkonfiguration für das DC Vakuumplasmaspritzen” [Modified Nozzle Configurations for DC Vacuum Plasma Spraying], Diploma Thesis, Technische Universität Ilmenau, Germany, 2006

  14. A. Schwenk, S. Mihm, G. Nutsch, A. Wank, and H. Gruner, Modified Supersonic Nozzles for the Vacuum Plasma Spraying, Thermal Spray 2005: Thermal Spray Connects: Explore its surfacing potential, E. Lugscheider, Ed., May 2-4, 2005 (Basel, Switzerland), DVS, 2005, p 363-368

  15. A. Schwenk, “Entwicklung und Erprobung neuartiger Düsen für das atmosphärische Plasmaspritzen” [The Development and Testing of Advanced Nozzles for Atmospheric Plasma Spraying], Ph.D. Thesis, Werkstoff und Werkstofftechnische Anwendungen, Vol.20, Technische Universität Chemnitz, Germany, 2005

  16. G. Thomas, “TBC-Schichten für Turbinenschaufeln” [TBC Coatings for Turbine Components], Diploma Thesis, Technische Universität Ilmenau, Germany, 2008

  17. M.I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas—Fundamentals and Applications, Vol 1, Plenum Press, New York, 1994

    Google Scholar 

  18. J. Matejicek and S. Sampath, In Situ Measurement of Residual Stresses and Elastic Moduli in Thermal Sprayed Coatings. Part 1: Apparatus and Analysis, J. Am. Ceram. Soc., 2008, 91(12), p 4036-4043

    Article  Google Scholar 

  19. Y. Liu, T. Nakamura, G. Dwivedi, A. Valarezo, and S. Sampath, Anelastic Behavior of Plasma-Sprayed Zirconia Coatings, Acta Mater., 2003, 51, p 863-872

    Article  Google Scholar 

  20. S. Sampath, V. Srinivasan, A. Valarezo, A. Vaidya, and T. Streibl, Sensing, Control, an In Situ Measurement of Coating Properties: An Integrated Approach Toward Establishing Process-Property Correlations, J. Therm. Spray Technol., 2009, 18(2), p 243-255

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The contribution of Medicoat and member of Stony Brook University-CTSR, Prof. Sanjay Sampath and Dr. Alfredo Valarezo is gratefully acknowledged. The authors would like to thank Dr. Markus Oehl from Alstom, Switzerland for always supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Mihm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mihm, S., Duda, T., Gruner, H. et al. Method and Process Development of Advanced Atmospheric Plasma Spraying for Thermal Barrier Coatings. J Therm Spray Tech 21, 400–408 (2012). https://doi.org/10.1007/s11666-012-9745-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-012-9745-2

Keywords

Navigation