Skip to main content
Log in

Flow Behavior, Dynamic Recrystallization and Processing Map of Mg-20Pb-1.6Al-0.4B Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Compression tests of the Mg-20Pb-1.6Al-0.4B alloy have been performed in the deformation temperature range of 240-420 °C and the strain rate range of 0.01-10 s−1. Flow behaviors were examined based on stress-strain curves and dynamic recrystallization (DRX) behaviors. The hot deformation apparent activation energy of the alloy is 147.5605 kJ/mol. The developed constitutive equation, which can be used to relate the peak stress to the absolute temperature and strain rate, was obtained. The correlation between the volume fraction of the DRX and strain at 240 °C and 0.01 s−1 was established. Processing maps of the Mg-20Pb-1.6Al-0.4B alloy at different strains are sensitive to strain. According to the processing maps and microstructures, the observed optimum parameters (temperature and strain rate) for hot working of the alloy were 300-420 °C and 0.01-0.06 s−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Srinivasan, C. Loganathan, R. Narayanasamy, V. Senthilkumar, Q.B. Nguyen, and M. Gupta, Study on Hot Deformation Behavior and Microstructure Evolution of Cast-Extruded AZ31B Magnesium Alloy and Nanocomposite Using Processing Map, Mater. Des., 2013, 47(9), p 449–455

    Article  Google Scholar 

  2. N. Wang, R. Wang, C. Peng, and Y. Feng, Enhancement of the Discharge Performance of AP65 Magnesium Alloy Anodes by Hot Extrusion, Corros. Sci., 2014, 81(4), p 85–95

    Article  Google Scholar 

  3. N. Wang, R. Wang, C. Peng, Y. Feng, and B. Chen, Effect of Hot Rolling and Subsequent Annealing on Electrochemical Discharge Behavior of AP65 Magnesium Alloy as Anode for Seawater Activated Battery, Corros. Sci., 2012, 64(6), p 17–27

    Article  Google Scholar 

  4. N. Wang, R. Wang, C. Peng, B. Peng, Y. Feng, and C. Hu, Discharge Behaviour of Mg-Al-Pb and Mg-Al-Pb-In Alloys as Anodes for Mg-Air Battery, Electrochim. Acta, 2014, 149, p 193–205

    Article  Google Scholar 

  5. L. Wen, K. Yu, H. Xiong, Y. Dai, S. Yang, X. Qiao, F. Teng, and S. Fan, Composition Optimization and Electrochemical Properties of Mg-Al-Pb-(Zn) Alloys as Anodes for Seawater Activated Battery, Electrochim. Acta, 2016, 194, p 40–51

    Article  Google Scholar 

  6. S. Candan, M. Unal, M. Turkmen, E. Koc, Y. Turen, and E. Candan, Improvement of Mechanical and Corrosion Properties of Magnesium Alloy by Lead Addition, J. Med. Biol. Eng., 2011, 31(4), p 233–244

    Article  Google Scholar 

  7. N. Nishino, H. Kawahara, Y. Shimizu, and H. Iwahori, Grain Refinement of Magnesium Casting Alloys by Boron Addition. In: K.U. Kainer, Magnesium Alloys and their Applications; 2000. p. 59–64.

  8. P. Acosta, J.A. Jimenez, G. Frommeyer, and O.A. Ruano, Microstructure Characterization of an Ultrahigh Carbon and Boron Tool Steel Processed by Different Routes, Mater. Sci. Eng., A, 1996, 206(206), p 194–200

    Article  Google Scholar 

  9. E.S.A. Waly and M.A. Bourham, Comparative Study of Different Concrete Composition as Gamma-Ray Shielding Materials, Ann. Nucl. Energy, 2015, 85, p 306–310

    Article  Google Scholar 

  10. M. Avedesian and H. Baker, Magnesium and Magnesium Alloys, ASM International, Materials Park (OH), 1999

    Google Scholar 

  11. Y.V.R.K. Prasad, K.P. Rao, and M. Gupta, Hot Workability and Deformation Mechanisms in Mg/Nano-Al2O3 Composite, Compos. Sci. Technol., 2009, 69(7–8), p 1070–1076

    Article  Google Scholar 

  12. Y.H. Duan, Y. Sun, M.J. Peng, Z.Z. Guo, and P.X. Zhu, Microstructure Evolution and Mechanical Properties of As-Cast Pb-Mg-Al Alloys, J. Mater. Eng. Perform., 2012, 21(6), p 973–976

    Google Scholar 

  13. Y.H. Duan, Hot Deformation and Processing Map of Pb-Mg-10Al-1B Alloy, J. Mater. Eng. Perform., 2013, 22(10), p 3049–3054

    Article  Google Scholar 

  14. Y. Xu, L. Hu, and Y. Sun, Processing Map and Kinetic Analysis for Hot Deformation of an As-Cast AZ91D Magnesium Alloy, Mater. Sci. Eng., A, 2013, 578(31), p 402–407

    Article  Google Scholar 

  15. M. Meng, Z.M. Zhang, B.H. Zhang, and J. Dou, Flow Behaviors and Processing Maps of As-Cast and As-Homogenized AZ91 Alloy, J. Alloys Compd., 2012, 513, p 112–117

    Article  Google Scholar 

  16. F.L. Sui, L.X. Xu, L.Q. Chen, and X.H. Liu, Processing Map for Hot Working of Inconel 718 Alloy, J. Mater. Process. Technol., 2011, 211(3), p 433–440

    Article  Google Scholar 

  17. Y. Xu, L.X. Hu, T.Q. Deng, and L. Ye, Hot Deformation Behavior and Processing Map of As-Cast AZ61 Magnesium Alloy, Mater. Sci. Eng., A, 2013, 559(3), p 528–533

    Article  Google Scholar 

  18. S. Anbuselvan and S. Ramanathan, Hot Deformation and Processing Maps of Extruded ZE41A Magnesium Alloy, Mater. Des., 2010, 31(5), p 2319–2323

    Article  Google Scholar 

  19. F.A. Slooff, J.S. Dzwonczyk, J. Zhou, J. Duszczyk, and L. Katgerman, Hot Workability Analysis of Extruded AZ Magnesium Alloys with Processing Maps, Mater. Sci. Eng., A, 2010, 527(3), p 735–744

    Article  Google Scholar 

  20. Z. Cai, F. Chen, F. Ma, and J. Guo, Dynamic Recrystallization Behavior and Hot Workability of AZ41 M Magnesium Alloy During Hot Deformation, J. Alloys Compd., 2016, 670(3), p 5126–5127

    Google Scholar 

  21. H. Mirzadeh, M. Roostaei, M.H. Parsa, and R. Mahmudi, Rate Controlling Mechanisms during Hot Deformation of Mg-3Gd-1Zn Magnesium Alloy: Dislocation Glide and Climb, Dynamic Recrystallization, and Mechanical Twinning, Mater. Des., 2015, 68, p 228–231

    Article  Google Scholar 

  22. N. Tahreen, D.F. Zhang, F.S. Pan, X.Q. Jing, D.Y. Li, and D.L. Chen, Hot Deformation and Processing Map of an As-Extruded Mg-Zn-Mn-Y Alloy Containing I, and W Phases, Mater. Des., 2015, 87, p 245–255

    Article  Google Scholar 

  23. Y. Jia, F. Cao, S. Guo, P. Ma, J. Liu, and J. Sun, Hot Deformation Behavior of Spray-Deposited Al-Zn-Mg-Cu Alloy, Mater. Des., 2014, 53(53), p 79–85

    Article  Google Scholar 

  24. E. Cerri, E. Evangelista, A. Forcellese, and H.J. McQueen, Comparative Hot Workability of 7012 and 7075 Alloys After Different Pretreatments, Mater. Sci. Eng., A, 1995, 197(2), p 181–198

    Article  Google Scholar 

  25. H.J. McQueen and N.D. Ryan, Constitutive Analysis in Hot Working, Mater. Sci. Eng., A, 2002, 322(1–2), p 43–63

    Article  Google Scholar 

  26. R. Bhattacharya, B.P. Wynne, and W.M. Rainforth, Flow Softening Behavior During Dynamic Recrystallization in Mg-3Al-1Zn Magnesium Alloy, Scripta Mater., 2012, 67(3), p 277–280

    Article  Google Scholar 

  27. C. Zener and J.H. Hollomon, Effect of Strain-Rate Upon the Plastic Flow of Steel, J. Appl. Phys., 1944, 15(1), p 22–27

    Article  Google Scholar 

  28. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Mater. Trans. A, 1984, 15(10), p 1883–1892

    Article  Google Scholar 

  29. Y.V.R.K. Prasad, Hot Working Guide: A Compendium of Processing Map, Materials Park, ASM International (OH), 1997

    Google Scholar 

  30. Y.V.R.K. Prasad and T. Seshacharyulu, Processing Maps for Hot Working of Titanium Alloys, Mater. Sci. Eng., A, 1998, 243(1), p 82–88

    Article  Google Scholar 

  31. O. Sivakesavam and Y.V.R.K. Prasad, Hot Deformation Behavior of As-Cast Mg-2Zn-1Mn Alloy in Compression : A Study with Processing Map, Mater. Sci. Eng., A, 2003, 362(1–2), p 118–124

    Article  Google Scholar 

  32. Y.V.R.K. Prasad and K.P. Rao, Processing Maps and Rate Controlling Mechanisms of Hot Deformation of Electrolytic Tough Pitch Copper in the Temperature Range 300–950 °C, Mater. Sci. Eng., A, 2005, 391(1–2), p 141–150

    Article  Google Scholar 

  33. B. Bozzini and E. Cerri, Numerical Reliability of Hot Working Processing Maps, Mater. Sci. Eng., A, 2002, 328(1–2), p 344–347

    Article  Google Scholar 

  34. S.V.S.N. Murty and B.N. Rao, On the Development of Instability Criteria During Hotworking with Reference to IN718, Mater. Sci. Eng., A, 1998, 254(1–2), p 76–82

    Article  Google Scholar 

  35. Y.V.R.K. Prasad, Recent Advances in the Science of Mechanical Processing, Indian J. Technol., 1990, 28, p 435–451

    Google Scholar 

  36. H.Z. Li, H.J. Wang, Z. Li, C.M. Liu, and H.T. Liu, Flow Behavior and Processing Map of As-Cast Mg-10Gd-4.8Y-2Zn-0.6Zr Alloy, Mater. Sci. Eng., A, 2010, 528(1), p 154–160

    Article  Google Scholar 

  37. Y.V.R.K. Prasad and N. Ravichandran, Effect of Stacking Fault Energy on the Dynamic Recrystallization during Hot Working of FCC Metals: A Study Using Processing Maps, Bull. Mater. Sci., 1991, 14(5), p 1241–1248

    Article  Google Scholar 

  38. B. Li, Q.L. Pan, Z.Y. Zhang, and X. Li, Characterization of Flow Behavior and Microstructural Evolution of Al-Zn-Mg-Sc-Zr Alloy Using Processing Maps, Mater. Sci. Eng., A, 2012, 556(11), p 844–848

    Article  Google Scholar 

  39. T. Sakai and J.J. Jonas, Dynamic Recrystallization: Mechanical and Microstructural Considerations, Acta Metall., 1984, 32(2), p 189–209

    Article  Google Scholar 

  40. M.R. Rokni, A. Zarei-Hanzaki, A.A. Roostaei, and A. Abolhasani, Constitutive Base Analysis of a 7075 Aluminum Alloy During Hot Compression Testing, Mater. Des., 2011, 32(1), p 4955–4960

    Article  Google Scholar 

  41. H.J. Frost and M.F. Ashby, Deformation Mechanism Maps, Pergamon Press, Oxford, 1982

    Google Scholar 

  42. Y.H. Duan, Y. Sun, M.J. Peng, and Z.Z. Guo, First Principles Investigation of the Binary Intermetallics in Pb-Mg-Al Alloy: Stability, Elastic Properties and Electronic Structure, Solid State Sci., 2011, 13(2), p 455–459

    Article  Google Scholar 

  43. S. Mandal, V. Rakesh, P.V. Sivaprasad, S. Venugopal, and K.V. Kasiviswanathan, Constitutive Equations to Predict High Temperature Flow Stress in a Ti-Modified Austenitic Stainless Steel, Mater. Sci. Eng., A, 2009, 500(1–2), p 114–121

    Article  Google Scholar 

  44. Y.C. Lin, M.S. Chen, and J. Zhong, Constitutive Modeling for Elevated Temperature Flow Behavior of 42 CrMo Steel, Comput. Mater. Sci., 2008, 42(3), p 470–477

    Article  Google Scholar 

  45. N.D. Ryan and H.J. McQueen, Dynamic Softening Mechanisms in 304 Austenitic Stainless Steel, Can. Metall. Q., 1990, 29(2), p 147–162

    Article  Google Scholar 

  46. M.E. Wahabi, L. Gavard, F. Montheillet, J.M. Cabrera, and J.M. Prado, Effect of Initial Grain Size on Dynamic Recrystallization in High Purity Austenitic Stainless Steels, Acta Mater., 2005, 53(17), p 4605–4612

    Article  Google Scholar 

  47. M.R. Barnett, G.L. Kelly, and P.D. Hodgson, Predicting the Critical Strain for Dynamic Recrystallization Using the Kinetics of Static Recrystallization, Scripta Mater., 2000, 43(4), p 365–369

    Article  Google Scholar 

  48. S.H. Zahiri, C.H.J. Davies, and P.D. Hodgson, A Mechanical Approach to Quantify Dynamic Recrystallization in Polycrystalline Metals, Scripta Mater., 2005, 52(4), p 299–304

    Article  Google Scholar 

  49. S.F. Medina and C.A. Hernandez, Modelling of the Dynamic Recrystallization of Austenite in Low Alloy and Microalloyed Steels, Acta Mater., 1996, 44(44), p 165–171

    Article  Google Scholar 

  50. A. Avrami, Kinetics of Phase Change. I: General Theory, J. Chem. Phys., 1939, 7(12), p 1103–1112

    Article  Google Scholar 

  51. A. Marchattiwar, A. Sarkar, J.K. Chakravartty, and B.P. Kashyap, Dynamic Recrystallization During Hot Deformation of 304 Austenitic Stainless Steel, J. Mater. Eng. Perform., 2013, 22(8), p 2168–2175

    Google Scholar 

  52. Y.V.R.K. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43(6), p 243–258

    Article  Google Scholar 

  53. L.Y. Zeng, G.J. Yang, P. Ge, X.N. Mao, Y.Q. Zhao, and L. Zhou, Processing Map of One Kind of Metastable β Titanium Alloy, Rare Met. Mater. Eng., 2010, 39(9), p 1505–1508

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific Research Fund of Department of Education of Yunnan Province (Grant No. 2015Z038), the Reserve Talents Project of Yunnan Province (Grant No. 2015HB019) and the Analysis and Testing Foundation of Kunming University of Science and Technology (Grant No. 2016T20110026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R.Y., Duan, Y.H., Ma, L.S. et al. Flow Behavior, Dynamic Recrystallization and Processing Map of Mg-20Pb-1.6Al-0.4B Alloy. J. of Materi Eng and Perform 26, 2439–2451 (2017). https://doi.org/10.1007/s11665-017-2681-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2681-z

Keywords

Navigation