Skip to main content
Log in

Influence of Cu Addition on the Structure, Mechanical and Corrosion Properties of Cast Mg-2%Zn Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Effects of different concentrations of Cu on the structure, mechanical and corrosion properties of Mg-2%Zn alloy were studied by the use of x-ray diffraction, optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, standard tensile testing, polarization and electrochemical impedance spectroscopy (EIS) measurements. The average grain size of the alloy decreased from above 1000 μm to about 200 μm with 5 wt.% Cu addition in as-cast condition. Microstructural studies revealed that Mg-2Zn-xCu alloys matrix typically consists of primary α-Mg and MgZnCu and Mg(Zn,Cu)2 intermetallics which are mainly found at the grain boundaries. The results obtained from mechanical testing ascertained that Cu addition increased the hardness values significantly. Although the addition of 0.5 wt.% Cu improved the ultimate tensile strength and elongation values, more Cu addition (i.e., 5 wt.%) weakened the tensile properties of the alloy by introducing semi-continuous network of brittle intermetallic phases. Based on polarization test results, it can be concluded that Cu eliminates a protective film on Mg-2%Zn alloy surface. Among Mg-2%Zn-x%Cu alloys, the one containing 0.1 wt.% Cu exhibited the best anti-corrosion property. However, further Cu addition increased the volume fraction of intermetallics culminating in corrosion rate enhancement due to the galvanic couple effect. EIS and microstructural analysis also confirmed the polarization results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. A.A. Luo, Resent Magnesium Alloy Development for Elevated Temperature Application, Int. Mater. Rev., 2004, 49, p 13–30

    Article  Google Scholar 

  2. D. Orlov, K.D. Ralston, N. Birbilis, and Y. Estrin, Enhanced Corrosion Resistance of Mg Alloy ZK60 After Processing by Integrated Extrusion and Equal Channel Angular Pressing, Acta Mater., 2011, 59, p 6176–6186

    Article  Google Scholar 

  3. P.J. Li, B. Tang, and E.G. Kandalova, Microstructure and Properties of AZ91D Alloy with Ca Additions, Mater. Lett., 2005, 59, p 671–675

    Article  Google Scholar 

  4. H. Sevik, S. Açikgoz, and S.C. Kurnaz, The Effect of Tin Addition on the Microstructure and Mechanical Properties of Squeeze Cast AM60 Alloy, Alloys Compd., 2010, 508, p 110–114

    Article  Google Scholar 

  5. K. Hono, C.L. Mendis, T.T. Sasaki, and K. Oh-ishi, Towards the Development of Heat-Treatable High-Strength Wrought Mg Alloys, Scr. Mater., 2010, 63, p 710–715

    Article  Google Scholar 

  6. J.Y. Lee, H.K. Lim, W.T. Kim, and D.H. Kim, Effect of Al Addition on the Elevated Temperature Deformation Behavior of Mg-Zn-Y Alloy, Mater. Sci. Eng. A, 2008, 487, p 481–487

    Article  Google Scholar 

  7. D.K. Xu, L. Liu, Y.B. Xu, and E.H. Han, Effect of Microstructure and Texture on the Mechanical Properties of the As-Extruded Mg-Zn-Y-Zr Alloys, Mater. Sci. Eng. A, 2007, 443, p 248–256

    Article  Google Scholar 

  8. M. Yamasaki, T. Anan, S. Yoshimoto, and Y. Kawamura, Mechanical Properties of Warm-Extruded Mg-Zn-Gd Alloy With Coherent 14H Long Periodic Stacking Ordered Structure Precipitate, Scr. Mater., 2005, 53, p 799–803

    Article  Google Scholar 

  9. T. Homma, C.L. Mendis, K. Hono, and S. Kamado, Effect of Zr Addition on the Mechanical Properties of As-Extruded Mg-Zn-Ca-Zr Alloys, Mater. Sci. Eng. A, 2010, 527, p 2356–2362

    Article  Google Scholar 

  10. J. Buha, Mechanical Properties of Naturally Aged Mg-Zn-Cu-Mn Alloy, Mater. Sci. Eng. A, 2008, 489, p 127–137

    Article  Google Scholar 

  11. X.H. Shao, Z.Q. Yang, and X.L. Ma, Strengthening and Toughening Mechanisms in Mg-Zn-Y Alloy with a Long Period Stacking Ordered Structure, Acta Mater., 2010, 58, p 4760–4771

    Article  Google Scholar 

  12. G. Ben-Hamu, D. Eliezer, A. Kaya, Y.G. Na, and K.S. Shin, Microstructure and Corrosion Behavior of Mg-Zn-Ag Alloys, Mater. Sci. Eng. A, 2006, 435, p 579–587

    Article  Google Scholar 

  13. G. Ben-Hamu, D. Eliezer, and K.S. Shin, The Role of Si and Ca on New Wrought Mg-Zn-Mn Based Alloy, Mater. Sci. Eng. A, 2007, 447, p 35–43

    Article  Google Scholar 

  14. M. Yamasaki, N. Hayashi, S. Izumi, and Y. Kawamura, Corrosion Behavior of Rapidly Solidified Mg-Zn-Rare Earth Element Alloys in NaCl Solution, Corros. Sci., 2007, 49, p 255–262

    Article  Google Scholar 

  15. W. Unsworth, A New Magnesium Alloy for Automobile Applications, Light Met. Age, 1987, 45, p 10–13

    Google Scholar 

  16. W. Unsworth, SAE Tech. Pap., 1989, 880512, p 1–6

    Google Scholar 

  17. A. Luo and M.O. Pekguleryuz, Cast Magnesium Alloys for Elevated Temperature Applications, Mater. Sci., 1994, 29, p 5259–5266

    Article  Google Scholar 

  18. J. Buha and T. Ohkubo, Natural Aging in Mg-Zn (-Cu) Alloys, Metall. Mater. Trans. A, 2008, 39, p 2259

    Article  Google Scholar 

  19. H.M. Zhu, G. Sha, J.W. Liu, C.L. Wu, C.P. Luo, Z.W. Liu, R.K. Zheng, and S.P. Ringer, Microstructure and mechanical properties of Mg-6Zn-xCu-0.6 Zr (wt.%) alloys, Alloys Compd., 2011, 509, p 3526–3531

    Article  Google Scholar 

  20. H.M. Zhu, C.P. Luo, J.W. Liu, and D.L. Jiao, Growth Twinning Behavior of Cast Mg-Zn-Cu-Zr Alloys, Trans. Nonferr. Met. Soc. China, 2014, 24, p 316–320

    Article  Google Scholar 

  21. H.M. Zhu, C.P. Luo, J.W. Liu, and D.L. Jiao, Effects of Cu Addition on Microstructure and Mechanical Properties of As-Cast Magnesium Alloy ZK60, Trans. Nonferr. Met. Soc. China, 2014, 24, p 605–610

    Article  Google Scholar 

  22. Jing Wang, Ruidong Liu, Tianjiao Luo, and Yuansheng Yang, A High Strength and Ductility Mg-Zn-Al-Cu-Mn Magnesium Alloy, Mater. Des., 2013, 47, p 746–749

    Article  Google Scholar 

  23. S. Golmakaniyoon and R. Mahmudi, Comparison of the Effects of La- and Ce-Rich Rare Earth Additions on the Microstructure, Creep Resistance, and High-Temperature Mechanical Properties of Mg-6Zn-3Cu Cast Alloy, Mater. Sci. Eng. A, 2011, 528, p 5228–5233

    Article  Google Scholar 

  24. J.H. Jun, J.M. Kim, B.K. Park, K.T. Kim, and W.J. Jung, Effects of Rare Earth Elements on Microstructure and High Temperature Mechanical Properties of ZC63 Alloy, Mater. Sci., 2005, 40, p 2659–2661

    Article  Google Scholar 

  25. Y.C. Lee, A.K. Dahle, and D.H. StJohn, The Role of Solute in Grain Refinement of Magnesium, Metall. Mater. Trans. A, 2000, 31, p 2895

    Article  Google Scholar 

  26. A. Becerra and M. Pekguleryuz, Effects of Zinc, Lithium, and Indium on the Grain Size of Magnesium, Mater. Res., 2009, 24, p 1722–1729

    Article  Google Scholar 

  27. H. Okamoto, Comment on Mg-Zn (Magnesium-Zinc), Phase Equilibria Diffus., 1994, 15, p 129–130

    Article  Google Scholar 

  28. Y. Song, E.H. Han, D. Shan, C.D. Yim, and B.S. You, The Effect of Zn Concentration on the Corrosion Behavior of Mg-xZn Alloys, Corros. Sci., 2012, 65, p 322–330

    Article  Google Scholar 

  29. Lu Cheng, Zhang Shuai, Zhang Yu, Zhou Da-Wei, He Chao-Zheng, and Lu Zhi-Wen, Insights into Structural and Thermodynamic Properties of the Intermetallic Compound in Ternary Mg-Zn-Cu Alloy Under High Pressure and High Temperature, Alloys Compd., 2014, 597, p 119–123

    Article  Google Scholar 

  30. N.J. Petch, J. Iron Steel Inst., 1953, 174, p 25–26

    Google Scholar 

  31. E.O. Hall, Proc. Phys. Soc. B, 1951, 64, p 747–753

    Article  Google Scholar 

  32. Y. Lu, Q. Wang, X. Zeng, W. Ding, C. Zhai, and Y. Zhu, Effects of Rare Earths on the Microstructure, Properties and Fracture Behavior of Mg-Al Alloys, Mater. Sci. Eng. A, 2000, 278, p 66–76

    Article  Google Scholar 

  33. Y.Z. Lu and Q.D. Wang, Effects of Silicon on Microstructure, Fluidity, Mechanical Properties, and Fracture Behaviour of Mg-6Al Alloy, Mater. Sci. Technol., 2001, 17, p 207

    Article  Google Scholar 

  34. Z.M. Shi and A. Atrens, An Innovative Specimen Configuration for the Study of Mg Corrosion, Corros. Sci., 2011, 53, p 226–246

    Article  Google Scholar 

  35. G. Song, A. Atrens, D. St, J. John, and Y.Li Nairn, The Electrochemical Corrosion of Pure Magnesium in 1 N NaCl, Corros. Sci., 1997, 39, p 855–875

    Article  Google Scholar 

  36. Y. Song, E.H. Han, D. Shan, C.D. Yim, and B.S. You, The Role of Second Phases in the Corrosion Behavior of Mg-5Zn Alloy, Corros. Sci., 2012, 60, p 238–245

    Article  Google Scholar 

  37. Y. Wang, M. Wei, J.C. Gao, J.Z. Hu, and Y. Zhang, Corrosion Process of Pure Magnesium in Simulated Body Fluid, Mater. Lett., 2008, 62, p 2181–2184

    Article  Google Scholar 

  38. S. Cai, T. Lei, N. Li, and F. Feng, Effects of Zn on Microstructure, Mechanical Properties and Corrosion Behavior of Mg-Zn Alloys, Mater. Sci. Eng. C, 2012, 32, p 2570–2577

    Article  Google Scholar 

  39. M. Liu, P. Schmutz, P.J. Uggowitzer, G.L. Song, and A. Atrens, Corros. Sci., 2010, 52, p 3687–3701

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge University of Tehran for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Emamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotfpour, M., Emamy, M., Dehghanian, C. et al. Influence of Cu Addition on the Structure, Mechanical and Corrosion Properties of Cast Mg-2%Zn Alloy. J. of Materi Eng and Perform 26, 2136–2150 (2017). https://doi.org/10.1007/s11665-017-2672-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2672-0

Keywords

Navigation