Skip to main content

Advertisement

Log in

Optimization of Oxidation Temperature for Commercially Pure Titanium to Achieve Improved Corrosion Resistance

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Thermal oxidation of commercially pure titanium (cp-Ti) was carried out at different temperatures, ranging from 200 to 900 °C to achieve optimum corrosion resistance of the thermally treated surface in simulated body fluid. Scanning electron microscopy, x-ray diffraction, Raman spectroscopy and electrochemical impedance spectroscopy techniques were used to characterize the oxides and assess their protective properties exposed in the test electrolyte. Maximum resistance toward corrosion was observed for samples oxidized at 500 °C. This was attributed to the formation of a composite layer of oxides at this temperature comprising Ti2O3 (titanium sesquioxide), anatase and rutile phases of TiO2 on the surface of cp-Ti. Formation of an intact and pore-free oxide-substrate interface also improved its corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Balazic, J. Kopac, M.J. Jackson, and W. Ahmed, Review: Titanium and Titanium Alloy Applications in Medicine, Int. J. Nano Biomater., 2007, 1, p 3–34

    Article  Google Scholar 

  2. M. Niinomi, Mechanical Bio Compatibilities of Titanium Alloys for Biomedical Applications, J. Mech. Behav. Biomed. Mater., 2007, 1, p 30–42

    Article  Google Scholar 

  3. J.E. Lemons, Biomaterials, Biomechanics, Tissue Healing and Immediate Function Dental Implants, J. Oral implantol., 2003, 30, p 318–324

    Article  Google Scholar 

  4. C.E. Misch, J.T. Strong, M.W. Bidez, in Scientific Rationale for Dental Implant Design: Contemporary Implant Dentistry, ed. by C.E. Misch, Chapter 11, (St Luis, Mosby, 2008), pp. 200–229

  5. S. Kumar, T.S.N. Narayanan, S.G. Raman, and S.K. Seshadri, Thermal Oxidation of CP-Ti: Evaluation of Characteristics and Corrosion Resistance as a Function of Treatment Time, Mater. Sci. Eng. C, 2009, 29, p 1942–1949

    Article  Google Scholar 

  6. J.E. Sundgren, P. Bodo, and I. Lundstrom, Auger Electron Microscopic Studies of the Interface Between Human Tissue and Implants Of Titanium and Stainless Steel, J. Colloid Interface Sci., 1984, 110, p 9–20

    Article  Google Scholar 

  7. C.J. Goodacre, G. Bernal, K. Rungcharassaeng, and J.Y. Kan, Clinical Complications with Implant and Implant Prosthesis, J. Prosthet. Dent., 2003, 90, p 121–132

    Article  Google Scholar 

  8. L.H. Li, Y.M. Kong, H.W. Kim, Y.W. Kim, H.E. Kim, S.J. Heo, and J.Y. Koak, Improved Biological Performance of Ti Implants Due to Surface Modification by Micro-arc Oxidation, Biomaterials, 2004, 25, p 2867–2875

    Article  Google Scholar 

  9. Y.T. Sul, C. Johansson, A. Wennerberg, L.R. Cho, B.S. Chang, and T. Albrektsson, Optimum Surface Properties of Oxidized Implants for Reinforcement of Osseointegration: Surface Chemistry, Oxide Thickness, Porosity, Roughness and Crystal Structure, Int. J. Oral Maxillofac. Implants, 2005, 20, p 349–395

    Google Scholar 

  10. M. Wen, C. Wen, P. Hodgson, and Y. Li, Improvement of the Biomedical Properties of Titanium Using SMAT and Thermal Oxidation, Colloids Surf. B Biointerfaces, 2014, 116, p 658–665

    Article  Google Scholar 

  11. Y.H. Huang, A.V. Xiropaidis, R.G. Sorensen, J.M. Albandar, J. Hall, and U.M. Wikesjo, Bone Formation at Titanium Porous Oxide (TiUnite) Oral Implants in Type IV Bone, Clin. Oral Implants Res., 2005, 16, p 105–111

    Article  Google Scholar 

  12. H. Guleryuz and H. Cimenoglu, Effect of Thermal Oxidation on Corrosion and Corrosion-Wear Behaviour of a Ti-6Al-4V Alloy, Biomaterials, 2004, 25, p 3325–3333

    Article  Google Scholar 

  13. H. Guleryuz and H. Cimenoglu, Surface Modification of a Ti-6Al-4V Alloy by Thermal Oxidation, Surf. Coat. Technol., 2005, 192, p 164–170

    Article  Google Scholar 

  14. E. Gemelli, A. Scariot, N. Heriberto, and A. Camargo, Thermal Characterization of Commercially Pure Titanium for Dental Applications, Mater. Res., 2007, 10, p 241–246

    Article  Google Scholar 

  15. B. Feng, J.Y. Chen, S.K. Qi, L. He, J.Z. Zhao, and X.D. Zhang, Characterization of Surface Oxide Films on Titanium and Bioactivity, J. Mater. Sci. Mater. Med., 2002, 13, p 457–464

    Article  Google Scholar 

  16. E. Gemelli and N.H.A. Camargo, Oxidation Kinetics of Commercially Pure Titanium, Revista Matéria, 2007, 12, p 525–531

    Google Scholar 

  17. S. Kumar, T.S.N. Sankara Narayanan, S.G. Sundara Raman, and S.K. Seshadri, Thermal Oxidation of CP Ti- an Electrochemical and Structural Characterization, Mater. Charact., 2010, 61, p 589–597

    Article  Google Scholar 

  18. B.B. Zhang, B.L. Wang, L. Li, and Y.F. Zheng, Corrosion Behaviour of Ti5Ag Alloy with and Without Thermal Oxidation in Artificial Saliva Solution, Dent. Mater., 2011, 27, p 214–220

    Article  Google Scholar 

  19. M. Jamesh, T.S.N. Sankara Narayanan, and P.K. Chu, Thermal Oxidation of Titanium: Evaluation of Corrosion Resistance as a Function of Cooling Rate, Mater. Chem. Phys., 2013, 138, p 565–572

    Article  Google Scholar 

  20. J. Hu, Y. Wang, and D.Y. Wang, Thermal Oxidation of CP-Ti at Different Temperatures, Adv. Mater. Res., 2010, 146-147, p 1536–1539

    Article  Google Scholar 

  21. A. Bloyce, Z. Qi-Y, H. Dong, and T. Bell, Surface Modification of Titanium Alloys for Combined Improvements in Corrosion and Wear Resistance, Surf. Coat. Technol., 1998, 107, p 125–132

    Article  Google Scholar 

  22. H. Dong, A. Bloyce. P.H. Morton, T. Bell, in Titanium 1995. Science and Technology, ed. by P.A. Blenkinsop, W.J. Evans, vol. II (Institute of Materials, London, 1996), pp. 1999–2006

  23. G.P. Burns, Titanium dioxide dielectric films formed by rapid thermal oxidation, J. Appl. Phys., 1989, 65, p 2095–2097

    Article  Google Scholar 

  24. J.E.G. Gonzalez and J.C. Mirza-Rosca, Study of the Corrosion Behavior of Titanium and Some of Its Alloys for Biomedical and Dental Implant Applications, J. Electroanal. Chem., 1999, 471, p 109–115

    Article  Google Scholar 

  25. P. Kofstad, High Temperature Corrosion (Elsevier Applied Science, Essex, 1988)

  26. M.A. Khan, R.L. Williams, and D.F. Williams, Conjoint Corrosion and Wear in Titanium Alloys, Biomaterials, 1999, 20, p 765–772

    Article  Google Scholar 

  27. M.G. Fontana, Corrosion Engineering, 3rd ed., McGraw-Hill, New York, 1997

    Google Scholar 

  28. G.W. Reade, C. Kerr, B.D. Barker, and F.C. Walsh, The importance of substrate surface condition in controlling the porosity of electroless nickel deposits, Trans. Inst. Met. Finish., 1998, 76, p 149

    Google Scholar 

  29. Nianwei Dai, Lai-Chang Zhang, Junxi Zhang, Qimeng Chena, and Wu Maoliang, Corrosion Behavior of Selective Laser Melted Ti-6Al-4V Alloy in NaCl Solution, Corros. Sci., 2016, 102, p 484–489

    Article  Google Scholar 

  30. J.R. Macdonald, Impedance Spectroscopy, Wiley, New York, 1987

    Google Scholar 

  31. A. Toloei, V. Stoilov, D. Northwood, The relationship between surface roughness and corrosion, in Proceedings of the ASME 2013 International Mechanical Engineering Congress & Exposition, IMECE2013, November 13–21, 2013, San Diego, California, USA. www.researchgate.net/publication/267596825

  32. A.S. Toloei, V. Stoilov, D.O. Northwood, Simultaneous effect of surface roughness and passivity on corrosion resistance of metals. Materials Characterization VII 355, WIT Transactions on Engineering Sciences, Vol 90, © 2015 WIT Press, www.witpress.com, ISSN 1743-3533 (on-line)

  33. D.M. Brunette, P. Tengvall, M. Textor, and P. Thomsen, Titanium in Medicine, Springer, New York, 2001

    Book  Google Scholar 

  34. S.G. Steinemann, Titanium—the Material of Choice?, Periodontology, 1998, 2000(17), p 7–21

    Article  Google Scholar 

  35. M. Zhou, J. Yu, S. Liu, P. Zhai, and L. Jiang, Effects of Calcination Temperatures on Photocatalytic Activity of SnO2/TiO2 Composite Films Prepared by an EPD Method, J. Hazard. Mater., 2008, 154, p 1141–1148

    Article  Google Scholar 

  36. S. Shao, M. Dimitrov, N. Guan, and R. Kohn, Crystalline Nanoporous Metal Oxide Thin Films by Post-Synthetic Hydrothermal Transformation: SnO2 and TiO2, Nanoscale, 2010, 2, p 2054–2057

    Article  Google Scholar 

  37. S. Takenaka, R. Takahashi, S. Sato, T. Sodesawa, F. Matsumoto, and S. Yoshida, Pore Size Control of Mesoporous SnO2 Prepared by Using Stearic Acid, Microporous Mater., 2003, 59, p 123–131

    Article  Google Scholar 

  38. X. Cheng and S.G. Roscae, Corrosion Behaviour of Titanium in the Presence of Calcium Phosphate and Serum Proteins, Biomaterials, 2005, 26, p 7350–7356

    Article  Google Scholar 

  39. J. Pouilleau, D. Devilliers, F. Garrido, S. Durand-Vidal, and E. Mahe, Structure and Composition of Passive Titanium Oxide Film, Mater. Sci. Eng. B, 1997, 47, p 235–243

    Article  Google Scholar 

  40. P. Thakur, B. Tan, and K. Venkatakrishnan, Multi-phase Fictionalization of Titanium for Enhanced Photon Absorption in the Vis-NIR Region, Sci. Rep., 2015, 5, p 15354. doi:10.1038/srep15354

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parimal Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, R., Singh, J.K., Singh, V. et al. Optimization of Oxidation Temperature for Commercially Pure Titanium to Achieve Improved Corrosion Resistance. J. of Materi Eng and Perform 26, 969–977 (2017). https://doi.org/10.1007/s11665-017-2515-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2515-z

Keywords

Navigation