Skip to main content
Log in

Investigation on Microstructure and Impact Toughness of Different Zones in Duplex Stainless Steel Welding Joint

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper investigated on microstructure and impact toughness of different zones in duplex stainless steel welding joint. High-temperature heat-affected zone (HTHAZ) contained coarse ferrite grains and secondary precipitates such as secondary austenite, Cr2N, and sigma. Intergranular secondary austenite was prone to precipitation in low-temperature heat-affected zone (LTHAZ). Both in weld metal (WM) and in HTHAZ, the austenite consisted of different primary and secondary austenite. The ferrite grains in base metal (BM) presented typical rolling texture, while the austenite grains showed random orientation. Both in the HTHAZ and in the LTHAZ, the ferrite grains maintained same texture as the ferrite in the BM. The secondary austenite had higher Ni but lower Cr and Mo than the primary austenite. Furthermore, the WM exhibited the highest toughness because of sufficient ductile austenite and unapparent ferrite texture. The HTHAZ had the lowest toughness because of insufficient austenite formation in addition to brittle sigma and Cr2N precipitation. The LTHAZ toughness was higher than the BM due to secondary austenite precipitation. In addition, the WM fracture was dominated by the dimple, while the cleavage was main fracture mode of the HTHAZ. Both BM and LTHAZ exhibited a mixed fracture mode of the dimple and quasi-cleavage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. J.C. de Lacerda, L.C. Cândido, and L.B. Godefroid, Effect of Volume Fraction of Phases and Precipitates on the Mechanical Behavior of UNS S31803 Duplex Stainless Steel, Int. J. Fatigue, 2015, 74, p 81–87

    Article  Google Scholar 

  2. Z.Q. Zhang, H.Y. Jing, L.Y. Xu, Y.D. Han, L. Zhao, and J.L. Zhang, Influence of Microstructure and Elemental Partitioning on Pitting Corrosion Resistance of Duplex Stainless Steel Welding Joints, Appl. Surf. Sci., 2017, 394, p 297–314

  3. F. Mirakhorli, F.M. Ghaini, and M.J. Torkamany, Development of Weld Metal Microstructures in Pulsed Laser Welding of Duplex Stainless Steel, J. Mater. Eng. Perform., 2012, 21, p 2173–2176

    Article  Google Scholar 

  4. J.O. Nilsson, L. Karlsson, and J.O. Andersson, Secondary Austenite Formation and Its Relation to Pitting Corrosion in Duplex Stainless Steel Weld Metal, Mater. Sci. Tech., 1995, 11, p 276–283

    Article  Google Scholar 

  5. W.T. Tsai and M.S. Chen, Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in Concentrated NaCl Solution, Corros. Sci., 2000, 42, p 545–559

    Article  Google Scholar 

  6. F. Zanotto, V. Grassi, A. Balbo, C. Monticelli, and F. Zucchi, Stress Corrosion Cracking of LDX 2101® Duplex Stainless Steel in Chloride Solutions in the Presence of Thiosulphate, Corros. Sci., 2014, 80, p 205–212

    Article  Google Scholar 

  7. A.A. El-Yazgi and D. Hardie, Stress Corrosion Cracking of Duplex and Super Duplex Stainless Steels in Sour Environments, Corros. Sci., 1998, 40, p 829–898

    Article  Google Scholar 

  8. Petroleum and Natural Gas Industries-Materials for Use in H2S-Containing Environments in Oil and Gas Production-Part 3: Cracking-Resistant CRAs (Corrosion-Resistant Alloys) and Other Alloys, 15156-3, ISO, 2003, p. 31–32.

  9. D.H. Kang and H.W. Lee, Study of the Correlation Between Pitting Corrosion and the Component Ratio of the Dual Phase in Duplex Stainless Steel Welds, Corros. Sci., 2013, 74, p 396–407

    Article  Google Scholar 

  10. Y.J. Guo, T.Y. Sun, J.C. Hu, Y.M. Jiang, L.Z. Jiang, and J. Li, Microstructure Evolution and Pitting Corrosion Resistance of the Gleeble-Simulated Heat-Affected Zone of a Newly Developed Lean Duplex Stainless Steel 2002, J. Alloy. Compd., 2016, 658, p 1031–1040

    Article  Google Scholar 

  11. R.B. Bhatt, H.S. Kamat, S.K. Ghosal, and P.K. De, Influence of Nitrogen in the Shielding Gas on Corrosion Resistance of Duplex Stainless Steel Welds, J. Mater. Eng. Perform., 1999, 8, p 591–597

    Article  Google Scholar 

  12. K.D. Ramkumar, D. Mishra, B. Ganesh Raj, M.K. Vignesh, G. Thiruvengatam, S.P. Sudharshan, N. Arivazhagan, N. Sivashanmugam, and A.M. Rabel, Effect of Optimal Weld Parameters in the Microstructure and Mechanical Properties of Autogeneous Gas Tungsten Arc Weldments of Super-Duplex Stainless Steel UNS S32750, Mater. Des., 2015, 66, p 356–365

    Article  Google Scholar 

  13. L. Karlsson, Welding Duplex Stainless Steels-A Review of Current Recommendations, Weld. World, 2012, 56, p 65–76

    Article  Google Scholar 

  14. L. Karlsson, Welding Duplex and Super Duplex Stainless Steels, Anti-Corros. Method. Mater., 1995, 42, p 30–35

    Article  Google Scholar 

  15. A.J. Ramirez, J.C. Lippold, and S.D. Brandi, The Relationship between Chromium Nitride and Secondary Austenite Precipitation in Duplex Stainless Steels, Metall. Mater. Trans. A, 2003, 34, p 1575–1597

    Article  Google Scholar 

  16. H. Kim, S. Jeon, S. Kim, I. Lee, Y. Park, K. Kim, and Y. Kim, Investigation of the Sensitization and Intergranular Corrosion of Tube-to-Tubesheet Welds of Hyper Duplex Stainless Steel Using an Electrochemical Reactivation Method, Corros. Sci., 2014, 87, p 60–70

    Article  Google Scholar 

  17. Z.Q. Zhang, H.Y. Jing, L.Y. Xu, Y.D. Han, and L. Zhao, Investigation on Microstructure Evolution and Properties of Duplex Stainless Steel Joint Multi-Pass Welded by Using Different Methods, Mater. Des., 2016, 109, p 670–685

    Article  Google Scholar 

  18. R. Badji, M. Bouabdallah, B. Bacroix, C. Kahloun, B. Belkessa, and H. Maza, Phase Transformation and Mechanical Behavior in Annealed 2205 Duplex Stainless Steel Welds, Mater. Charact., 2008, 59, p 447–453

    Article  Google Scholar 

  19. S. Kim, S. Jang, I. Lee, and Y. Park, Effects of Solution Heat-Treatment and Nitrogen in Shielding Gas on the Resistance to Pitting Corrosion of Hyper Duplex Stainless Steel Welds, Corros. Sci., 2011, 53, p 1939–1947

    Article  Google Scholar 

  20. A.J. Ramirez, S.D. Brandi, and J.C. Lippold, Secondary Austenite and Chromium Nitride Precipitation in Simulated Heat Affected Zones of Duplex Stainless Steels, Sci. Technol. Weld. Join., 2004, 9, p 301–313

    Article  Google Scholar 

  21. V. Muthupandi, P.B. Srinivasan, S.K. Seshadri, and S. Sundaresan, Effect of Nitrogen Addition on Formation of Secondary Austenite in Duplex Stainless Steel Weld Metals and Resultant Properties, Sci. Technol. Weld. Join., 2004, 9, p 47–52

    Article  Google Scholar 

  22. T. Chehuan, V. Dreilich, K.S. de Assis, F.V.V. de Sousa, and O.R. Mattos, Influence of Multipass Pulsed Gas Metal Arc Welding on Corrosion Behaviour of A Duplex Stainless Steel, Corros. Sci., 2014, 86, p 268–274

    Article  Google Scholar 

  23. M. Asif, K.A. Shrikrishna, P. Sathiya, and S. Goel, The Impact of Heat Input on the Strength, Toughness, Microhardness, Microstructure and Corrosion Aspects of Friction Welded Duplex Stainless Steel Joints, J. Manuf. Process., 2015, 18, p 92–106

    Article  Google Scholar 

  24. K.D. Ramkumar, G. Thiruvengatam, S.P. Sudharsan, D. Mishra, N. Arivazhagan, and R. Sridhar, Characterization of Weld Strength and Impact Toughness in the Multi-Pass Welding of Super-Duplex Stainless Steel UNS 32750, Mater. Des., 2014, 60, p 125–135

    Article  Google Scholar 

  25. A.V. Jebaraj and L. Ajaykumar, Influence of Microstructural Changes on Impact Toughness of Weldment and Base Metal of Duplex Stainless Steel AISI, 2205 for Low Temperature Applications, Proc. Eng., 2013, 64, p 456–466

    Article  Google Scholar 

  26. S. Wessman, Evaluation of the WRC 1992 Diagram Using Computational Thermodynamics, Weld. World, 2013, 57, p 305–313

    Google Scholar 

  27. X.J. Jin, L.X. Huo, Y.F. Zhang, B.R. Bai, X.W. Li, and J. Cao, Finite Element Analysis of Modeling Residual Stress Distribution in All-Position Duplex Stainless Steel Welded Pipe, J. Mater. Sci. Technol., 2004, 20, p 387–390

    Article  Google Scholar 

  28. J. Chen and B. Young, Stress-Strain Curves for Stainless Steel at Elevated Temperatures, Eng. Struct., 2006, 28, p 229–239

    Article  Google Scholar 

  29. C. Lee and K. Chang, Comparative Study on Girth Weld-Induced Residual Stresses between Austenitic and Duplex Stainless Steel Pipe Welds, Appl. Therm. Eng., 2014, 63, p 140–150

    Article  Google Scholar 

  30. Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count, E562-11, ASTM, 2011, p. 1–7.

  31. Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, E23-16c, ASTM, 2012, p. 1–27

  32. A. Comer, Corrosion Fatigue of a Superduplex Stainless Steel Weldment. Ph.D. Thesis, Dublin City University, 2003

  33. E.M. Westin, Microstructure and Properties of Welds in the Lean Duplex Stainless Steel LDX 2101. Ph.D. Thesis, Royal Institute of Technology, 2010

  34. C.M. Garzón and A.J. Ramirez, Growth Kinetics of Secondary Austenite in the Welding Microstructure of A UNS S32304 Duplex Stainless Steel, Acta Mater., 2006, 54, p 3321–3331

    Article  Google Scholar 

  35. A. Eghlimi, M. Shamanian, and K. Raeissi, Effect of Current Type on Microstructure and Corrosion Resistance of Super Duplex Stainless Steel Claddings Produced by the Gas Tungsten Arc Welding Process, Surf. Coat. Technol., 2014, 244, p 45–51

    Article  Google Scholar 

  36. A. Eghlimi, M. Shamanian, M. Eskandarian, A. Zabolian, and J.A. Szpunar, Characterization of Microstructure and Texture Across Dissimilar Super Duplex/Austenitic Stainless Steel Weldment Joint by Super Duplex Filler Metal, Mater. Charact., 2015, 106, p 27–35

    Article  Google Scholar 

  37. A. Eghlimi, M. Shamanian, M. Eskandarian, A. Zabolian, M. Nezakat, and J.A. Szpunar, Evaluation of Microstructure and Texture Across the Welded Interface of Super Duplex Stainless Steel and High Strength Low Alloy Steel, Surf. Coat. Technol., 2015, 264, p 150–162

    Article  Google Scholar 

  38. Y.H. Yang, B. Yan, J. Li, and J. Wang, The Effect of Large Heat Input on the Microstructure and Corrosion Behaviour of Simulated Heat Affected Zone in 2205 Duplex Stainless Steel, Corros. Sci., 2011, 53, p 3756–3763

    Article  Google Scholar 

  39. K. Yildizli, Investigation on the Microstructure and Toughness Properties of Austenitic and Duplex Stainless Steels Weldments under Cryogenic Conditions, Mater. Des., 2015, 77, p 83–94

    Article  Google Scholar 

  40. E.M. Westin and S. Hertzman, Element Distribution in Lean Duplex Stainless Steel Welds, Weld. World, 2014, 58, p 143–160

    Article  Google Scholar 

  41. T. Ogawa and T. Koseki, Effect of Composition Profiles on Metallurgy and Corrosion Behavior of Duplex Stainless Steel Weld Metals, Weld. Res. Suppl., 1989, 1, p 181–191

    Google Scholar 

  42. S.M. Yang, Y.C. Chen, C.H. Chen, W.P. Huang, and D.Y. Lin, Microstructural Characterization of δ/γ/σ/γ2/χ Phases in Silver-Doped 2205 Duplex Stainless Steel under 800 °C Aging, J. Alloy. Compd., 2015, 633, p 48–53

    Article  Google Scholar 

  43. N.L. Isern, H.L. Luque, I.L. Jiménez, and M.V. Biezma, Identification of Sigma and Chi Phases in Duplex Stainless Steels, Mater. Charact., 2016, 112, p 20–29

    Article  Google Scholar 

  44. R. Badji, B. Bacroix, and M. Bouabdallah, Texture, Microstructure and Anisotropic Properties in Annealed 2205 Duplex Stainless Steel Welds, Mater. Charact., 2011, 62, p 833–843

    Article  Google Scholar 

  45. L. Karlsson and J.B. Rjesson, Orientation Relationships of Intragranular Austenite in Duplex Stainless Steel Weld Metals, Sci. Technol. Weld. Join., 2014, 19, p 318–323

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China [Grant Number 51575382] and Marine Economic Innovation and Development of Regional Demonstration Projects of China [Grant number cxsf2014-12].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianyong Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Jing, H., Xu, L. et al. Investigation on Microstructure and Impact Toughness of Different Zones in Duplex Stainless Steel Welding Joint. J. of Materi Eng and Perform 26, 134–150 (2017). https://doi.org/10.1007/s11665-016-2441-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2441-5

Keywords

Navigation