Skip to main content

Advertisement

Log in

Influence of Grain Refinement on Microstructure and Mechanical Properties of Tungsten Carbide/Zirconia Nanocomposites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

WC-W2C/ZrO2 nanocomposites were synthesized by pressure-less sintering (PS) and spark plasma sintering (SPS) of tungsten carbide/yttria-stabilized tetragonal zirconia, WC/TZ-3Y. Prior to sintering, WC/TZ-3Y powders were totally ball-milled for 20 and 120 h to obtain targeted nano (N) and nano-nano (N-N) structures, indicated by transmission electron microscopy and powder x-ray diffraction (PXRD). The milled powders were processed via PS at temperatures of 1773 and 1973 K for 70 min and SPS at 1773 K for 10 min. PXRD as well as SEM-EDS indicated the formation of WC-W2C/ZrO2 composites after sintering. The mechanical properties were characterized via Vicker microhardness and nanoindentation techniques indicating enhancements for sufficiently consolidated composites with high W2C content. The effects of reducing particle sizes on phase transformation, microstructure and mechanical properties are reported. In general, the composites based on the N structure showed higher microhardness than those for N-N structure, except for the samples PS-sintered at 1773 K. For instance, after SPS at 1773 K, the N structure showed a microhardness of 18.24 GPa. Nanoindentation measurements revealed that nanoscale hardness up to 22.33 and 25.34 GPa and modulus of elasticity up to 340 and 560 GPa can be obtained for WC-W2C/ZrO2 nanocomposites synthesized by the low-cost PS at 1973 K and by SPS at 1773 K, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Whitney, Ceramic Cutting Tools, Comprehensive Hard Materials, 1st ed., V. Sarin, Ed., Elsevier, New York, 2014, p 491–505

    Chapter  Google Scholar 

  2. S. Dolinšek, B. Šuštaršič, and J. Kopač, Wear Mechanisms of Cutting Tools in High-Speed Cutting Processes, Wear, 2001, 250, p 349–356

    Article  Google Scholar 

  3. X.S. Li and I.M. Low, Ceramic Cutting Tools—An Introduction, Key Eng. Mater., 1994, 96, p 1–18

    Article  Google Scholar 

  4. M.S. El-Eskandarany, A.A. Mahday, H.H.A. Ahmed, and A.H. Amer, Synthesis and Characterizations of Ball-Milled Nanocrystalline WC and Nanocomposite WC-Co Powders and Subsequent Consolidations, J. Alloys Compd., 2000, 312, p 315–325

    Article  Google Scholar 

  5. R.W. Armstrong, The Hardness and Strength Properties of WC-Co Composites, Materials (Basel), 2011, 4, p 1287–1308

    Article  Google Scholar 

  6. Z. Fang, P. Maheshwari, X. Wang, H.Y. Sohn, A. Griffo, and R. Riley, An Experimental Study of the Sintering of Nanocrystalline WC-Co Powders, Int. J. Refract. Met. Hard Mater., 2005, 23, p 249–257

    Article  Google Scholar 

  7. M.S. El-Eskandarany, H.M.A. Soliman, and M. Omoric, Influence of Nanocrystalline ZrO2 Additives on the Fracture Toughness and Hardness of Spark Plasma Activated Sintered WC/ZrO2 Nanocomposites Obtained by Mechanical Mixing Method, Open J. Compos. Mater., 2012, 02, p 1–7

    Article  Google Scholar 

  8. I.-J. Shon, I.-K. Jeong, I.-Y. Ko, J.-M. Doh, and K.-D. Woo, Sintering Behavior and Mechanical Properties of WC-10Co, WC-10Ni and WC-10Fe Hard Materials Produced by High-Frequency Induction Heated Sintering, Ceram. Int., 2009, 35, p 339–344

    Article  Google Scholar 

  9. A. Mukhopadhyay, D. Chakravarty, and B. Basu, Spark Plasma-Sintered WC-ZrO2-Co Nanocomposites with High Fracture Toughness and Strength, J. Am. Ceram. Soc., 2010, 93, p 1754–1763

    Google Scholar 

  10. J. Ma, S.G. Zhu, P. Di, and Y. Zhang, Influence of La2O3 Addition on Hardness, Flexural Strength and Microstructure of Hot-Pressing Sintered WC-MgO Bulk Composites, Mater. Des., 2011, 32, p 2125–2129

    Article  Google Scholar 

  11. H. Qu, S. Zhu, Q. Li, and C. Ouyang, Influence of Sintering Temperature and Holding Time on the Densification, Phase Transformation, Microstructure and Properties of Hot Pressing WC-40 vol.%Al2O3 composites, Ceram. Int., 2012, 38, p 1371–1380

    Article  Google Scholar 

  12. S. Imasato, K. Tokumoto, T. Kitada, and S. Sakaguchi, Properties of Ultra-fine Grain Binderless Cemented Carbide “RCCFN”, Int. J. Refract. Met. Hard Mater., 1995, 13, p 305–312

    Article  Google Scholar 

  13. O. Malek, B. Lauwers, Y. Perez, P. De Baets, and J. Vleugels, Processing of Ultrafine ZrO2 Toughened WC Composites, J. Eur. Ceram. Soc., 2009, 29, p 3371–3378

    Article  Google Scholar 

  14. G. Anné, S. Put, K. Vanmeensel, D. Jiang, J. Vleugels, and O. Van der Biest, Hard, Tough and Strong ZrO2-WC Composites from Nanosized Powders, J. Eur. Ceram. Soc., 2005, 25, p 55–63

    Article  Google Scholar 

  15. B. Basu, T. Venkateswaran, and D. Sarkar, Pressureless sintering and tribological properties of WC-ZrO2 composites, J. Eur. Ceram. Soc., 2005, 25, p 1603–1610

    Article  Google Scholar 

  16. B. Basu and K. Balani, Advanced Structural Ceramics, Wiley, New Jersey, 2011

    Book  Google Scholar 

  17. B. Basu, J.-H. Lee, and D.-Y. Kim, Development of WC-ZrO2 Nanocomposites by Spark Plasma Sintering, J. Am. Ceram. Soc., 2004, 87, p 317–319

    Article  Google Scholar 

  18. B. Wang, K. Matsumaru, J. Yang, Z. Fu, and K. Ishizaki, The Effect of cBN Additions on Densification, Microstructure and Properties of WC-Co Composites by Pulse Electric Current Sintering, J. Am. Ceram. Soc., 2012, 95, p 2499–2503

    Article  Google Scholar 

  19. B. Wang, Y. Qin, F. Jin, J.-F. Yang, and K. Ishizaki, Pulse Electric Current Sintering of Cubic Boron Nitride/Tungsten Carbide-cobalt (cBN/WC-Co) Composites: Effect of cBN Particle Size and Volume Fraction on Their Microstructure and Properties, Mater. Sci. Eng. A, 2014, 607, p 490–497

    Article  Google Scholar 

  20. O. Eso, Z. Fang, and A. Griffo, Liquid Phase Sintering of Functionally Graded WC-Co Composites, Int. J. Refract. Met. Hard Mater., 2005, 23, p 233–241

    Article  Google Scholar 

  21. R.M. German, Sintering Theory and Practice, Wiley, New York, 1996

    Google Scholar 

  22. K. Biswas, A. Mukhopadhyay, B. Basu, and K. Chattopadhyay, Densification and Microstructure Development in Spark Plasma Sintered WC-6 wt.% ZrO2 Nanocomposites, J. Mater. Res., 2007, 22, p 1491–1501

    Article  Google Scholar 

  23. A.S. Kurlov and A.I. Gusev, Tungsten Carbides and W-C Phase Diagram, Inorg. Mater., 2006, 42, p 121–127

    Article  Google Scholar 

  24. T. Dash and B.B. Nayak, Preparation of WC-W2C Composites by Arc Plasma Melting and Their Characterisations, Ceram. Int., 2013, 39, p 3279–3292

    Article  Google Scholar 

  25. H.S.W. Yih and C.T. Wang, Tungsten Sources, Metallurgy and Applications, Plenum Press, New York, 1981

    Google Scholar 

  26. W.-T. Chen, C.H. Meredith, and E.C. Dickey, Growth and Microstructure-Dependent Hardness of Directionally Solidified WC-W2C Eutectoid Ceramics, J. Am. Ceram. Soc., 2015, 98, p 2191–2196

    Article  Google Scholar 

  27. K. Niihara, New Design Concept of Structural Ceramics-Ceramic New Design Concept of Structural Ceramics-Ceramic Nanocomposites, J. Ceram. Soc. Jpn., 1991, 99, p 974–982

    Article  Google Scholar 

  28. A. Gubernat, P. Rutkowski, G. Grabowski, and D. Zientara, Hot Pressing of Tungsten Carbide with and Without Sintering Additives, Int. J. Refract. Met. Hard Mater., 2014, 43, p 193–199

    Article  Google Scholar 

  29. M. Dopita, C. Sriram, Spark Plasma Sintering of Nanocrystalline Binderless WC Hard Metals, Proceedings of the Conference on Nanocon, Olomouc, Czech Repub, 2010, p 10–15.

  30. B. Basu, J.H. Lee, and D.Y. Kim, Processing of Nanoceramics and Nanoceramic Composites: New Results, Key Eng. Mater., 2004, 264-268, p 2293–2296

    Article  Google Scholar 

  31. V.Z. Kublii, T.Y. Velikanova, O.A. Gnitetskii, and S.I. Makhovitskaya, Structural Parameters of the Low-Temperature Metastable form of the Carbide W2C, Powder Metall. Met. Ceram., 2000, 39, p 151–156

    Article  Google Scholar 

  32. S.A. Makhlouf, M.A. Kassem, and M.A. Abdel-Rahim, Particle Size-Dependent Electrical Properties of Nanocrystalline NiO, J. Mater. Sci., 2009, 44, p 3438–3444

    Article  Google Scholar 

  33. M.J. Pascual, A. Durán, and L. Pascual, Sintering Behaviour of Composite Materials Borosilicate Glass-ZrO2 Fibre Composite Materials, J. Eur. Ceram. Soc., 2002, 22, p 1513–1524

    Article  Google Scholar 

  34. A.D. Krawitz, D.G. Reichel, and R. Hitterman, Thermal Expansion of Tungsten Carbide at Low Temperature, J. Am. Ceram. Soc., 1989, 72, p 515–517

    Article  Google Scholar 

  35. T. Epicier, J. Dubois, C. Esnouf, G. Fantozzi, and P. Convert, Neutron Powder Diffraction Studies of Transition Metal Hemicarbides M2C1−x—II. In Situ High Temperature Study on W2C1−x and Mo2C1−x, Acta Metall., 1988, 36, p 1903–1921

    Article  Google Scholar 

  36. L.C. Ming, J.B. Balogh, S. Qadri, E.F. Skelton, D. Schiferl, and M.H. Manghnani, Equation of State and Phase Transition Studies Under In Situ High P-T Conditions Using Synchrotron Radiation, Reidel, Boston MA, Solid State Physics under Pressure: Recent Advance with Anvil Devices, S. Minomura, Ed., Terra Scientific Publishing, Tokyo, 1985, p 343–350

    Google Scholar 

Download references

Acknowledgment

This work is supported by Egypt-Japan University of Science and Technology (EJUST). The authors are grateful to Prof. H. Nakamura from the Department of Material Science and Engineering, Kyoto University, for his support in samples preparation and characterization. Prof. K. Shinagawa and Prof. Y. Tanaka from the Faculty of Engineering, Kagawa University, are acknowledged for electron diffraction facilities and fruitful discussion in the microstructure analysis. M.A.K. and A.N. would like to thank the Ministry of Higher Education (MOHE) of Egypt for the financial support during their study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Kassem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasser, A., Kassem, M.A., Elsayed, A. et al. Influence of Grain Refinement on Microstructure and Mechanical Properties of Tungsten Carbide/Zirconia Nanocomposites. J. of Materi Eng and Perform 25, 5065–5075 (2016). https://doi.org/10.1007/s11665-016-2341-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2341-8

Keywords

Navigation