Skip to main content

Advertisement

Log in

The Microstructure, Texture and Mechanical Properties of the Rolled Al/Mg/Al Clad Sheets

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Two types of three-layered Al/Mg/Al clad sheets were fabricated by hot rolling. The first (sheet A) underwent a single pass with a small rolling reduction of 33% and the second (sheet B) underwent four passes with a large rolling reduction of 71%, and both were subsequently annealed at 200 °C for 1 h. Microstructural examination and tensile tests on the fabricated sheets revealed that 17.8-μm-thick intermetallic compound layers (IMCLs) appeared at AZ31/5052 interfaces in sheet B while none were observed in sheet A. The AZ31 layers in sheets A and B exhibited basal textures with intensities of 15.1 and 9.8, respectively, and only sheet A exhibited tensile twins (TTs) in the AZ31 layer. Recrystallization resulting in grains was preferred near the AZ31/5052 interface and the intersections between TTs. Owing to its larger rolling reduction, more extensive recrystallization was observed in the sheet B component layers than in sheet A. Sheet B exhibited better mechanical properties with a much higher ultimate tensile strength (UTS) than sheet A (230 versus 102 MPa) and a slightly larger elongation (19 versus 17%).This indicates that texture intensities and the extent of recrystallization of component layers have a significant effect upon the mechanical properties of clad sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H. Chang, M.Y. Zheng, W.M. Gan, K. Wu, E. Maawad, and H.G. Brokmeier, Texture Evolution of the Mg/Al Laminated Composite Fabricated by the Accumulative Roll Bonding, Scr. Mater., 2009, 61, p 717–720

    Article  Google Scholar 

  2. Z.J. Wang, L. Zhai, M. Ma, H. Yuan, and W.C. Liu, Microstructure, Texture and Mechanical Properties of Al/Al Laminated Composites Fabricated by Hot Rolling, Mater. Sci. Eng. A, 2015, 644, p 194–203

    Article  Google Scholar 

  3. X.B. Li, G.Y. Zu, and P. Wang, Effect of Strain Rate on Tensile Performance of Al/Cu/Al Laminated Composites Produced by Asymmetrical Roll Bonding, Mater. Sci. Eng. A, 2013, 575, p 61–64

    Article  Google Scholar 

  4. B. Zhang, Y. Kou, Y.Y. Xia, and X. Zhang, Modulation of Strength and Plasticity of Multiscale Ni/Cu Laminated Composites, Mater. Sci. Eng. A, 2015, 636, p 216–220

    Article  Google Scholar 

  5. B.X. Liu, L.J. Huang, L. Geng, B. Wang, and X.P. Cui, Effects of Reinforcement Volume Fraction on Tensile Behaviors of Laminated Ti–TiBw/Ti Composites, Mater. Sci. Eng. A, 2014, 610, p 344–349

    Article  Google Scholar 

  6. W. Elthalabawy and T. Khan, Liquid Phase Bonding of 316L Stainless Steel to AZ31 Magnesium Alloy, J. Mater. Sci. Technol., 2011, 27, p 22–28

    Article  Google Scholar 

  7. T. Mori and S. Kurimoto, Press-Formability of Stainless Steel and Aluminum Clad Sheet, J. Mater. Sci. Technol., 1996, 56, p 242–253

    Article  Google Scholar 

  8. J.E. Lee, D.H. Bae, W.S. Chung, K.H. Kim, J.H. Lee, and Y.R. Cho, Effects of Annealing on the Mechanical and Interface Properties of Stainless Steel/Aluminum/Copper Clad-Metal Sheets, J. Mater. Process. Technol., 2007, 187–188, p 546–549

    Article  Google Scholar 

  9. B. Li, Y.F. Shen, L. Luo, and W.Y. Hu, Effects of Processing Variables and Heat Treatments on Al/Ti-6Al-4 V Interface Microstructure of Bimetal Clad-Plate Fabricated Via a Novel Route Employing Friction Stir Lap Welding, J. Alloy. Comp., 2016, 658, p 904–913

    Article  Google Scholar 

  10. H.R. Akramifard, H. Mirzadeh, and M.H. Parsa, Cladding of Aluminum on AISI, 304L Stainless Steel by Cold Roll Bonding: Mechanism, Microstructure, and Mechanical Properties, Mater. Sci. Eng. A, 2014, 613, p 232–239

    Article  Google Scholar 

  11. W.P. Jia, X.D. Hu, H.Y. Zhao, D.Y. Ju, and D.L. Chen, Texture Evolution of AZ31 Magnesium Alloy Sheets During Warm Rolling, J. Alloy. Comp., 2015, 645, p 70–77

    Article  Google Scholar 

  12. A. Gholinia, F.J. Humphreys, and P.B. Prangnell, Production of Ultra-fine Grain Microstructures in Al-Mg Alloys by Coventional Rolling, Acta Mater., 2002, 50, p 4461–4476

    Article  Google Scholar 

  13. X.P. Zhang, T.H. Yang, S. Castagne, and J.T. Wang, Microstructure; Bonding Strength and Thickness Ratio of Al/Mg/Al Alloy Laminated Composites Prepared by Hot Rolling, Mater. Sci. Eng. A, 2011, 528, p 1954–1960

    Article  Google Scholar 

  14. C. Xu, M.Y. Zheng, K. Wu, E.D. Wang, G.H. Fan, S.W. Xu, S. Kamado, X.D. Liu, G.J. Wang, X.Y. Lv, M.J. Li, and Y.T. Liu, Effect of Final Rolling Reduction on the Microstructure and Mechanical Properties of Mg–Gd–Y–Zn–Zr Alloy Sheets, Mater. Sci. Eng. A, 2013, 559, p 232–240

    Article  Google Scholar 

  15. X.S. Huang, K. Suzuki, and Y. Chino, Influences of Initial Texture on Microstructure and Stretch Formability of Mg–3Al–1Zn Alloy Sheet Obtained by a Combination of High Temperature and Subsequent Warm Rolling, Scr. Mater., 2010, 63, p 395–398

    Article  Google Scholar 

  16. A. Styczynski, Ch Hartig, J. Bohlen, and D. Letzig, Cold Rolling Textures in AZ31 Wrought Magnesium Alloy, Scr. Mater., 2004, 50, p 943–947

    Article  Google Scholar 

  17. A. Macwan, V.K. Patel, X.Q. Jiang, C. Li, S.D. Bhole, and D.L. Chen, Ultrasonic Spot Welding of Al/Mg/Al Tri-Layered Clad Sheets, Mater. Des., 2014, 62, p 344–351

    Article  Google Scholar 

  18. A. Macwan, X.Q. Jiang, C. Li, and D.L. Chen, Effect of Annealing on Interface Microstructures and Tensile Properties of Rolled Al/Mg/Al Tri-Layer Clad Sheets, Mater. Sci. Eng. A, 2013, 587, p 344–351

    Article  Google Scholar 

  19. K.S. Lee, Y.S. Lee, and Y.N. Kwon, Influence of Secondary Warm Rolling on the Interface Microstructure and Mechanical Properties of a Roll-Bonded Three-Ply 1050 Al/AZ31/1050 Al Sheet, Mater. Sci. Eng. A, 2014, 606, p 205–213

    Article  Google Scholar 

  20. J.H. Cho, H.W. Kim, S.B. Kang, and T.S. Han, Bending Behavior, and Evolution of Texture and Microstructure During Differential Speed Warm Rolling of AZ31B Magnesium Alloys, Acta Mater., 2011, 59, p 5638–5651

    Article  Google Scholar 

  21. O. Engler, Control of Texture and Earing in Aluminium Alloy AA 3105 Sheet for Packaging Applications, Mater. Sci. Eng. A, 2012, 538, p 69–80

    Article  Google Scholar 

  22. J.S. Kim, K.S. Lee, Y.N. Kwon, B.J. Lee, Y.W. Chang, and S. Lee, Improvement of Interfacial Bonding Strength in Roll-Bonded Mg/Al Clad Sheets Through Annealing and Secondary Rolling Process, Mater. Sci. Eng. A, 2015, 628, p 1–10

    Article  Google Scholar 

  23. U.F.H. Suhuddin, V. Fischer, and J.F. dos Santos, The Thermal Cycle During the Dissimilar Friction Spot Welding of Aluminum and Magnesium Alloy, Scr. Mater., 2013, 68, p 87–90

    Article  Google Scholar 

  24. Y.S. Sato, S.H.C. Park, M. Michiuchi, and H. Kokawa, Constitutional Liquation During Dissimilar Friction Stir Welding of Al and Mg Alloys, Scr. Mater., 2004, 50, p 1233–1236

    Article  Google Scholar 

  25. K.S. Lee, D.H. Yoon, H.K. Kim, Y.N. Kwon, and Y.S. Lee, Effect of Annealing on the Interface Microstructure and Mechanical Properties of a STS–Al–Mg 3-ply Clad Sheet, Mater. Sci. Eng. A, 2012, 556, p 319–330

    Article  Google Scholar 

  26. Y. Funamizu and K. Watanabe, Trans Japan Inst Metals Trans JIM, 1972, 13, p 278–283

    Article  Google Scholar 

  27. J.C. Tan and M.J. Tan, Dynamic Continuous Recrystallization Characteristics in Two Stage Deformation of Mg-3Al-1Zn Alloy Sheet, Mater. Sci. Eng. A, 2012, 558, p 510–516

    Article  Google Scholar 

  28. C.Y. Liu, R. Jing, Q. Wang, B. Zhang, Y.Z. Jia, M.Z. Ma, and R.P. Liu, Fabrication of Al/Al3Mg2 Composite by Vacuum Annealing and Accumulative Roll-Bonding Process, Mater. Sci. Eng. A, 2012, 558, p 510–516

    Article  Google Scholar 

  29. B. Wang, Experimental Research on Mechanical Properties on AZ31 Plate, 5052 Plate and Magnesium-Aluminum Composite Plate, College of Science and Engineering. Taiyuan University of Technology, Taiyuan, 2013, p 40–45

    Google Scholar 

  30. J.C. Tan and M.J. Tan, Homogenizing Annealing Heat Treatment Effects on the Microstructure, Hardness and Thermal Behavior of Al12Mg17 Complex Metallic Alloy, Mater. Design., 2015, 75, p 17–23

    Article  Google Scholar 

  31. E. O. Hall., The Deformation and Ageing of Mild Steel: III. Discussion of Results, Proc. Phys. Soc. Lond. B. 1951, 64, 747

Download references

Acknowledgment

This study was supported by the National Natural Science Foundation of China under Grant Nos. 51175363 and 51274149; Shanxi Scholarship Council of China (No. 2014-029); The Youth Science Foundation of Shanxi Province under Grant No. 2008021033; the Fund for the Doctoral Program of Higher Education of China under Grant No. 20111402110004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, H., Liang, W., Zheng, L. et al. The Microstructure, Texture and Mechanical Properties of the Rolled Al/Mg/Al Clad Sheets. J. of Materi Eng and Perform 25, 4695–4705 (2016). https://doi.org/10.1007/s11665-016-2327-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2327-6

Keywords

Navigation