Skip to main content
Log in

Effect of Friction Stir Processing on Microstructure and Mechanical Properties of AZ91C Magnesium Cast Alloy Weld Zone

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, friction stir processing (FSP) was applied to the GTAW (TIG)-welded AZ91C cast alloy to refine the microstructure and optimize the mechanical properties of the weld zone. Microstructural investigation of the samples was performed by optical microscopy and the phases in the microstructure were determined by x-ray diffraction (XRD). The microstructural evaluations showed that FSP destroys the coarse dendritic microstructure. Furthermore, it dissolves the secondary hard and brittle β-Mg17Al12 phase existing at grain boundaries of the TIG weld zone. The closure and decrease in amount of porosities along with the elimination of the cracks in the microstructure were observed. These changes were followed by a significant grain refinement to an average value of 11 µm. The results showed that the hardness values increased to the mean ones, respectively, for as-cast (63 Hv), TIG weld zone (67 Hv), and stir zone (79 Hv). The yield and ultimate strength were significantly enhanced after FSP. The fractography evaluations, by scanning electron microscopy (SEM), indicated to a transition from brittle to ductile fracture surface after applying FSP to the TIG weld zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. Sameer Kumar, C. Tara Sasanka, K. Ravindra, and K.N.S. Suman, Magnesium and Its Alloys in Automotive Applications: A Review, Am. J. Mater. Sci. Technol., 2015, 4, p 12–30

    Google Scholar 

  2. J. Wegrzyn, M. Mazur, A. Szymanski, and B. Balcerowska, Development of a Filler for Welding Magnesium Alloy GA8, Weld. Int., 1987, 2, p 146–150

    Article  Google Scholar 

  3. Z.J. Lu, W.J. Evans, J.D. Parker, and S. Birley, Simulation of Microstructure and Liquation Cracking in 7017 Aluminium Alloy, Mater. Sci. Eng. A, 1996, 220, p 1–7

    Article  Google Scholar 

  4. J. Sheng, G.Q. You, S.Y. Long, and F.S. Pan, Abnormal Macropore Formation During Double-Sided Gas Tungsten Arc Welding Of Magnesium AZ91D Alloy, Mater. Charact., 2008, 59, p 1059–1065

    Article  Google Scholar 

  5. A. Razal Rose, K. Manisekar, V. Balasubramanian, and S. Rajakumar, Prediction and Optimization of Pulsed Current Tungsten Inert Gas Welding Parameters to Attain Maximum Tensile Strength in AZ61A Magnesium Alloy, Mater. Des., 2012, 37, p 334–348

    Article  Google Scholar 

  6. G. Padmanaban and V. Balasubramania, Optimization of Pulsed Current Gas Tungsten Arc Welding Process Parameters to Attain Maximum Tensile Strength in AZ31B Magnesium Alloy, Trans. Nonferrous Met. Soc. China, 2011, 21, p 467–476

    Article  Google Scholar 

  7. C. Xu, G. Sheng, H. Wang, and X. Yuan, Reinforcement of Mg/Ti Joints Using Ultrasonic Assisted Tungsten Inert Gas Welding–Brazing Technology, Sci. Technol. Weld. Join., 2014, 19, p 703–707

    Article  Google Scholar 

  8. M. Marya and G.R. Edwards, Chloride Contributions in Flux Assisted GTA Welding of Magnesium Alloys, Weld. J., 2002, 81, p 292-s–298-s

    Google Scholar 

  9. W. Zhou, T.Z. Long, and C.K. Mark, Hot Cracking in Tungsten Inert Gas Welding of Magnesium Alloy AZ91D, Mater. Sci. Technol., 2007, 23, p 1294–1299

    Article  Google Scholar 

  10. W. Tiejun and L. Zhiwen, A Continuum Damage Model for Weld Heat Affected Zone Under Low Cycle Fatigue Loading, Eng. Fract. Mech., 1990, 37, p 825–829

    Article  Google Scholar 

  11. F.Y. Zheng, Y.J. Wu, L.M. Peng, X.W. Li, P.H. Fu, and W.J. Ding, Microstructures and Mechanical Properties of Friction Stir Processed Mg-2.0Nd-0.3Zn-1.0Zr Magnesium Alloy, J. Magnes. Alloys, 2013, 1, p 122–127

    Article  Google Scholar 

  12. E. Cerri and P. Leo, Effect of Friction Stir Processing on Microstructure and Mechanical Properties of a HPDC Magnesium Alloy, Mater. Sci. Forum, 2014, 783–786, p 1735–1740

    Article  Google Scholar 

  13. F. Chai, D.T. Zhang, and Y.Y. Li, Effect of rotation speeds on microstructures and tensile properties of submerged friction stir processed AZ31 magnesium alloy, Mater. Res. Innov., 2014, 18, p S4-152–S4-156

    Article  Google Scholar 

  14. American Welding Society, Welding Handbook, 7th ed., vol. 4, AWS, Miami, FL, 1989

  15. A.K. Dahle, Y.C. Lee, M.D. Nave, P.L. Schaffer, and D.H. St John, Development of the As-Cast Microstructure in Magnesium-Aluminium Alloys, J. Light Met., 2001, 1, p 61–72

    Article  Google Scholar 

  16. D.X. Sun, D.Q. Sun, X.Y. Gu, and Z.Z. Xuan, Hot Cracking of Metal Inert Gas Arc Welded Magnesium Alloy AZ91D, ISIJ Int., 2009, 49, p 270–274

    Article  Google Scholar 

  17. I.J. Polmear, Light Alloys: Metallurgy of the Light Metals, 2nd ed., Chapman and Hall, London, 1989, ISBN 0-340-49175-2

    Google Scholar 

  18. ASM Handbook Committee, Alloy Phase Diagrams, ASM International, Materials Park, OH, 1992

  19. Sindo Kou and Welding Metallurgy, 2, Wiley, New York, 1987

    Google Scholar 

  20. Q. Han, E.A. Kenik, S.R. Agnew, and S. Viswanathan, Solidification Behavior of Commercial Magnesium Alloys, Magnesium Technology 2001, J.N. Hryn, Ed., The Minerals, Metals and Materials Society (TMS), Warrendale, PA, 2001.

    Google Scholar 

  21. G.C. Sih, Multiscale Fatigue Crack Initiation and Propagation of Engineering Materials, Structural Integrity and Microstructural Worthiness: Solid Mathematics and Its Applications, vol. 152, Springer, New York, 2008.

  22. M.D. Nave, A.K. Dahle, and D.H. St. John, Magnesium Technology 2000, H.I. Kaplan, J.N. Hryn, and B.B. Clow, Ed., The Minerals, Metals and Materials Society (TMS), Warrendale, PA, 2000

  23. J.D.I. Shearouse and B.A. Mikucki, The Origin of Microporosity in Magnesium Alloy AZ91, SAE Trans. J. Mater. Manuf., 1994, 103, p 542–552

    Google Scholar 

  24. M. Hilpert and L. Wagner, Surface Treatment IV, C.A. Brebbiaand and J.M. Kenny, Ed., WIT Press, 1999, p 331

  25. W.C. Zheng, S. Li, B. Tang, and D.B. Zeng, Microstructure and Properties of Mg-Al Binary Alloys, China Foundry, 2006, 3, p 270–274

    Google Scholar 

  26. M.M. Avedesian, Magnesium and Magnesium Alloys, ASM International, Materials Park, OH, 1999

    Google Scholar 

  27. Alaknanda, R.S. Anand, and P. Kumar, Flaw Detection in Radiographic Weld Images Using Morphological Approach, NDT & E Int. 39, p 29–33

  28. V. Jain, R.S. Mishra, and A.K. Gupta, Gouthama, Study of β-Precipitates and Their Effect on the Directional Yield Asymmetry of Friction Stir Processed and Aged AZ91C Alloy, Mater. Sci. Eng., A, 2013, 560, p 500–509

    Article  Google Scholar 

  29. A.H. Feng, B.L. Xiao, Z.Y. Ma, and R.S. Chen, Effect of Friction Stir Processing Procedures on Microstructure and Mechanical Properties of Mg-Al-Zn Casting, Effect of Friction Stir Processing Procedures on Microstructure and Mechanical Properties of Mg-Al-Zn Casting, Metall. Mater. Trans. A, 2009, 40, p 2447–2456

    Article  Google Scholar 

  30. N. Afrin, D.L. Chen, X. Cao, and M. Jahazi, Strain Hardening Behavior of a Friction Stir Welded Magnesium Alloy, Scr. Mater., 2007, 57, p 1004–1007

    Article  Google Scholar 

  31. ASM Speciality Handbook, Magnesium and Magnesium Alloys, ASM International, Materials Park, OH, 1999, p 1–314

  32. W. Wen, W. Kuaishe, G. Qiang, and W. Nan, Effect of Friction Stir Processing on Microstructure and Mechanical Properties of Cast AZ31 Magnesium Alloy, Rare Met. Mater. Eng., 2012, 41, p 1522–1526

    Article  Google Scholar 

  33. X.B. Liu, R.S. Chen, and E.H. Han, Effects of Ageing Treatment on Microstructures and Properties of Mg-Gd-Y-Zr Alloys With and Without Zn Additions, J. Alloys Compd., 2008, 465, p 232–238

    Article  Google Scholar 

  34. W. Blum, P. Zhang, B. Watzinger, B.V. Grossmann, and H.G. Haldenwanger, Comparative Study of Creep of the Die-Cast Mg-Alloys AZ91, AS21, AS41, AM60 and AE42, Mater. Sci. Eng. A, 2001, 319–321, p 735–740

    Article  Google Scholar 

  35. A. Fallahi, A. Ataee, and F. Biglari, Effects of Crystal Orientation on Stress Distribution Near the Triple Junction in a Tricrystal γ-TiAl, Mater. Sci. Eng. A, 2010, 527, p 4576–4581

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Hassani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassani, B., Karimzadeh, F., Enayati, M.H. et al. Effect of Friction Stir Processing on Microstructure and Mechanical Properties of AZ91C Magnesium Cast Alloy Weld Zone. J. of Materi Eng and Perform 25, 2776–2785 (2016). https://doi.org/10.1007/s11665-016-2129-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2129-x

Keywords

Navigation