Skip to main content
Log in

The Microstructure Evolution and Processing Map of Ni-18.3Cr-6.4Co-5.9W-4Mo Superalloy During Hot Deformation

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The processing map and microstructure evolution of Ni-18.3Cr-6.4Co-5.9W-4Mo superalloy were investigated in the temperature range of 1010-1160 °C and strain rate range of 0.001-1 s−1 by means of hot compression tests. According to the processing map, the optimum processing parameters were located in the temperature range of 1100-1160 °C and strain rate range of 0.01-0.3 s−1. The carbides in the alloy contributed to form a fine grain microstructure. In addition, four different instability criteria of Prasad, Gegel, Malas, and Murty were used to predict the unstable domains in the processing map. Meanwhile, the microstructure observations revealed that the unstable domain predicted by Murty’s instability criterion was very effective at high strain rate, which was the best choice for the studied alloy. Furthermore, the electron backscattered diffraction technique was used to detect the Σ3 boundaries and the adiabatic shear bands in the alloy. The results revealed that the fractions of Σ3 boundaries in the alloy deformed at 1100 °C/0.01 s−1 and 1160 °C/0.1 s−1 reached about 25 and 27%, respectively. Meanwhile, the fraction of low-angle grain boundaries and dislocation density were relatively high in the adiabatic shear band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Zhang, K. Zhang, H. Zhou, Z. Lu, C. Zhao, and X. Yang, Effect of Strain Rate on Microstructure Evolution of a Nickel-Based Superalloy During Hot Deformation, Mater. Des., 2015, 80, p 51–62

    Article  Google Scholar 

  2. H. Zhang, K. Zhang, Z. Lu, C. Zhao, and X. Yang, Hot Deformation Behavior and Processing Map of a γ′-Hardened Nickel-Based Superalloy, Mater. Sci. Eng.: A, 2014, 604, p 1–8

    Article  Google Scholar 

  3. N. Park, I. Kim, Y. Na, and J. Yeom, Hot Forging of a Nickel-Base Superalloy, J. Mater. Process. Technol., 2001, 111, p 98–102

    Article  Google Scholar 

  4. R. Raj, Development of a Processing Map for Use in Warm-Forming and Hot-Forming Processes, Metall. Trans. A, 1981, 12, p 1089–1097

    Article  Google Scholar 

  5. H. Gegel, J. Malas, S. Doraivelu, and V. Shende, Metals Hand Book, Vol 14, American Society of Metals, Metals Park, OH, 1987, p 417

    Google Scholar 

  6. M. Xiong, Z. Weidong, S. Yu, Z. Yongqing, W. Shaoli, and Z. Yigang, A Comparative Study of Various Flow Instability Criteria in Processing Map, Rare Metal Mater. Eng., 2010, 39, p 756–761

    Article  Google Scholar 

  7. Y. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43, p 243–258

    Article  Google Scholar 

  8. S. Murty and B.N. Rao, On the Development of Instability Criteria During Hotworking with Reference to IN 718, Mater. Sci. Eng., 1998, 254, p 76–82

    Article  Google Scholar 

  9. S. Murty, B.N. Rao, and B. Kashyap, Improved Ductile Fracture Criterion for Cold Forming of Spheroidised Steel, J. Mater. Process. Technol., 2004, 147, p 94–101

    Article  Google Scholar 

  10. Y. Prasad, H. Gegel, S. Doraivelu, J. Malas, J. Morgan, K. Lark, and D. Barker, Modeling of Dynamic Material Behavior in hot Deformation: Forging of Ti-6242, Metall. Trans. A, 1984, 15, p 1883–1892

    Article  Google Scholar 

  11. J.C. Malas and V. Seetharaman, Using Material Behavior Models to Develop Process Control Strategies, JOM, 1992, 44, p 8–13

    Article  Google Scholar 

  12. A. Amiri, M. Sadeghi, and G. Ebrahimi, Characterization of Hot Deformation Behavior of AMS 5708 Nickel-Based Superalloy Using Processing Map, J. Mater. Eng. Perform., 2013, 22, p 3940–3945

    Article  Google Scholar 

  13. Y. Ning, Z. Yao, H. Li, H. Guo, Y. Tao, and Y. Zhang, High Temperature Deformation Behavior of Hot Isostatically Pressed P/M FGH4096 Superalloy, Mater. Sci. Eng., 2010, 527, p 961–966

    Article  Google Scholar 

  14. Q. Pan, B. Li, Y. Wang, Y. Zhang, and Z. Yin, Characterization of Hot Deformation Behavior of Ni-Base Superalloy Rene’41 Using Processing Map, Mater. Sci. Eng., 2013, 585, p 371–378

    Article  Google Scholar 

  15. D.-X. Wen, Y.C. Lin, H.-B. Li, X.-M. Chen, J. Deng, and L.-T. Li, Hot Deformation Behavior and Processing Map of a Typical Ni-Based Superalloy, Mater. Sci. Eng., 2014, 591, p 183–192

    Article  Google Scholar 

  16. Y.C. Lin, D.-G. He, M.-S. Chen, X.-M. Chen, C.-Y. Zhao, X. Ma, and Z.-L. Long, EBSD Analysis of Evolution of Dynamic Recrystallization Grains and δ Phase in a Nickel-Based Superalloy During Hot Compressive Deformation, Mater. Des., 2016, 97, p 13–24

    Google Scholar 

  17. Z. Shi, X. Yan, and C. Duan, Characterization of Hot Deformation Behavior of GH925 Superalloy Using Constitutive Equation, Processing Map and Microstructure Observation, J. Alloys Compd., 2015, 652, p 30–38

    Article  Google Scholar 

  18. D.-X. Wen, Y. Lin, J. Chen, J. Deng, X.-M. Chen, J.-L. Zhang, and M. He, Effects of Initial Aging Time on Processing Map and Microstructures of a Nickel-Based Superalloy, Mater. Sci. Eng., 2015, 620, p 319–332

    Article  Google Scholar 

  19. Y. Kong, P. Chang, Q. Li, L. Xie, and S. Zhu, Hot Deformation Characteristics and Processing Map of Nickel-Based C276 Superalloy, J. Alloys Compd., 2015, 622, p 738–744

    Article  Google Scholar 

  20. P. Zhang, C. Hu, C.-G. Ding, Q. Zhu, and H.-Y. Qin, Plastic Deformation Behavior and Processing Maps of a Ni-Based Superalloy, Mater. Des., 2015, 65, p 575–584

    Article  Google Scholar 

  21. Y.-Q. Ji, S.-D. Qu, and W.-X. Han, Hot Deformation and Processing Map of GH3535 Superalloy, Trans. Nonferrous Metals Soc. China, 2015, 25, p 88–94

    Article  Google Scholar 

  22. D.-G. He, Y. Lin, M.-S. Chen, J. Chen, D.-X. Wen, and X.-M. Chen, Effect of Pre-treatment on Hot Deformation Behavior and Processing Map of an Aged Nickel-Based Superalloy, J. Alloys Compd., 2015, 649, p 1075–1084

    Article  Google Scholar 

  23. F. Chen, J. Liu, H. Ou, B. Lu, Z. Cui, and H. Long, Flow Characteristics and Intrinsic Workability of IN718 Superalloy, Mater. Sci. Eng., 2015, 642, p 279–287

    Article  Google Scholar 

  24. Y.C. Lin, J. Deng, Y.-Q. Jiang, D.-X. Wen, and G. Liu, Hot Tensile Deformation Behaviors and Fracture Characteristics of a Typical Ni-Based Superalloy, Mater. Des., 2014, 55, p 949–957

    Article  Google Scholar 

  25. Y.C. Lin, J. Deng, Y.-Q. Jiang, D.-X. Wen, and G. Liu, Effects of Initial δ Phase on Hot Tensile Deformation Behaviors and Fracture Characteristics of a Typical Ni-Based Superalloy, Mater. Sci. Eng., 2014, 598, p 251–262

    Article  Google Scholar 

  26. D. Li, Q. Guo, S. Guo, H. Peng, and Z. Wu, The Microstructure Evolution and Nucleation Mechanisms of Dynamic Recrystallization in Hot-Deformed Inconel 625 Superalloy, Mater. Des., 2011, 32, p 696–705

    Article  Google Scholar 

  27. H. Jiang, J. Dong, M. Zhang, L. Zheng, and Z. Yao, Hot Deformation Characteristics of Alloy 617B Nickel-Based Superalloy: A Study Using Processing Map, J. Alloys Compd., 2015, 647, p 338–350

    Article  Google Scholar 

  28. S. Guo, D. Li, H. Pen, Q. Guo, and J. Hu, Hot Deformation and Processing Maps of Inconel 690 Superalloy, J. Nucl. Mater., 2011, 410, p 52–58

    Article  Google Scholar 

  29. M.C. Somani, K. Muraleedharan, Y.V.R.K. Prasad, and V. Singh, Mechanical Processing and Microstructural Control in Hot Working of Hot Isostatically Pressed P/M IN-100 Superalloy, Mater. Sci. Eng., 1998, 245, p 88–99

    Article  Google Scholar 

  30. V. Sample, G. Fitzsimons, and A. DeArdo, Dynamic Softening of Copper During Deformation at High Temperatures and Strain Rates, Acta Metall., 1987, 35, p 367–379

    Article  Google Scholar 

  31. D.G. Brandon, The Structure of High-Angle Grain Boundaries, Acta Metall., 1966, 14, p 1479–1484

    Article  Google Scholar 

  32. R.L. Fullman, Formation of Annealing Twins during Grain Growth, J. Appl. Phys., 1950, 22, p 1350–1355

    Article  Google Scholar 

  33. S. Mahajan, C.S. Pande, M.A. Imam, and B.B. Rath, Formation of Annealing Twins in f.c.c. Crystals, Acta Mater., 1997, 45, p 2633–2638

    Article  Google Scholar 

  34. H.Y. Sun, Z.J. Zhou, M. Wang, and L.I. Xiao, Effect of Thermomechanical Parameters on 3n Grain Boundaries and Grain Boundary Networks of a New Superaustenitic Stainless Steel, J Iron Steel Res., 2014, 21, p 109–115

    Article  Google Scholar 

  35. Q. Guo, D. Li, S. Guo, H. Peng, and J. Hu, The Effect of Deformation Temperature on the Microstructure Evolution of Inconel 625 Superalloy, J. Nucl. Mater., 2011, 414, p 440–450

    Article  Google Scholar 

  36. R. Doherty, D. Hughes, F. Humphreys, J. Jonas, D.J. Jensen, M. Kassner, W. King, T. McNelley, H. McQueen, and A. Rollett, Current Issues in Recrystallization: A Review, Mater. Today, 1998, 1, p 14–15

    Article  Google Scholar 

  37. H. Zhou, R. Liu, Z. Liu, X. Zhou, Q. Peng, F. Zhong, and Y. Peng, Hot Deformation Characteristics of GH625 and Development of a Processing Map, J. Mater. Eng. Perform., 2013, 22, p 2515–2521

    Article  Google Scholar 

  38. G. Zhou, H. Ding, F. Cao, B. Zhang, A Comparative Study of Various Flow Instability Criteria in Processing Map of Superalloy GH4742, J. Mater. Sci. Technol., 2014, 30, p 217–222

  39. S. Medeiros, Y. Prasad, W.G. Frazier, and R. Srinivasan, Microstructural Modeling of Metadynamic Recrystallization in Hot Working of IN 718 Superalloy, Mater. Sci. Eng., 2000, 293, p 198–207

    Article  Google Scholar 

  40. X. Wang, E. Brünger, and G. Gottstein, The Role of Twinning During Dynamic Recrystallization in Alloy 800H, Scr. Mater., 2002, 46, p 875–880

    Article  Google Scholar 

  41. Y. Wang, L. Zhen, W. Shao, L. Yang, and X. Zhang, Hot Working Characteristics and Dynamic Recrystallization of Delta-Processed Superalloy 718, J. Alloys Compd., 2009, 474, p 341–346

    Article  Google Scholar 

  42. S. Medeiros, Y. Prasad, W.G. Frazier, and R. Srinivasan, Modeling Grain Size During Hot Deformation of IN 718, Scr. Mater., 1999, 42, p 17–23

    Article  Google Scholar 

  43. Y. Wang, W. Shao, L. Zhen, L. Yang, and X. Zhang, Flow Behavior and Microstructures of Superalloy 718 During High Temperature Deformation, Mater. Sci. Eng., 2008, 497, p 479–486

    Article  Google Scholar 

  44. G. Gottstein, Annealing Texture Development by Multiple Twinning in fcc Crystals, Acta Metall., 1984, 32, p 1117–1138

    Article  Google Scholar 

  45. H.-Y. Wu, F.-J. Zhu, S.-C. Wang, W.-R. Wang, C.-C. Wang, and C.-H. Chiu, Hot Deformation Characteristics and Strain-Dependent Constitutive Analysis of Inconel 600 Superalloy, J. Mater. Sci., 2012, 47, p 3971–3981

    Article  Google Scholar 

  46. S.N. Murty and B.N. Rao, On the Flow Localization Concepts in the Processing Maps of Titanium Alloy Ti-24Al-20Nb, J. Mater. Process. Technol., 2000, 104, p 103–109

    Article  Google Scholar 

  47. S. Murty and B.N. Rao, On the Hot Working Characteristics of Inconel Alloy MA 754 Using Processing Maps, Scand. J. Metall., 2000, 29, p 146–150

    Article  Google Scholar 

  48. S.N. Murty, B.N. Rao, and B. Kashyap, On the Hot Working Characteristics of 6061Al-SiC and 6061-Al 2 O 3 Particulate Reinforced Metal Matrix Composites, Compos. Sci. Technol., 2003, 63, p 119–135

    Article  Google Scholar 

  49. S. Narayana Murty, B. Nageswara Rao, and B. Kashyap, Identification of Flow Instabilities in the Processing Maps of AISI, 304 Stainless Steel, J. Mater. Process. Technol, 2005, 166, p 268–278

    Article  Google Scholar 

  50. S. Ramanathan, R. Karthikeyan, and M. Gupta, Development of Processing Maps for Al/SiCp Composite Using Fuzzy Logic, J. Mater. Process. Technol., 2007, 183, p 104–110

    Article  Google Scholar 

  51. C. Yu, D. Hongshuang, Z. Jingqi, M. Tianjun, and Z. Jiecen, Research on Hot Deformation Behavior and Hot Workability of Alloy 800H, Acta Metall. Sin., 2013, 49(7), p 811–821

    Article  Google Scholar 

  52. S. Mandal, M. Jayalakshmi, A. Bhaduri, and V.S. Sarma, Effect of Strain Rate on the Dynamic Recrystallization Behavior in a Nitrogen-Enhanced 316L (N), Metall. Mater. Trans. A, 2014, 45, p 5645–5656

    Article  Google Scholar 

  53. K. Song and M. Aindow, Grain Growth and Particle Pinning in a Model Ni-Based Superalloy, Mater. Sci. Eng., 2008, 479, p 365–372

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by A Project of Shandong Province Higher Educational Science and Technology Program (No. J12LB03) and Research Foundation for new introduced doctor of Shandong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Liu or Hongbin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, S., Liu, J., Zhang, H. et al. The Microstructure Evolution and Processing Map of Ni-18.3Cr-6.4Co-5.9W-4Mo Superalloy During Hot Deformation. J. of Materi Eng and Perform 25, 2489–2499 (2016). https://doi.org/10.1007/s11665-016-2091-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2091-7

Keywords

Navigation