Skip to main content

Advertisement

Log in

Effect of Post Weld Heat Treatment on Mechanical and Corrosion Behaviors of NiTi and Stainless Steel Laser-Welded Wires

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Effects of post weld heat treatment (PWHT) on mechanical properties and corrosion behavior of NiTi shape memory wire, laser welded to the 304 stainless steel wire were investigated. The results showed that PWHT at 200 °C increased corrosion resistance and tensile strength of the joint up to ~1.8 times that of the as-weld joint, with no heat treatment. On the contrary, precipitation of neoteric intermetallic compounds like Fe2Ti, Cr2Ti, FeNi, Ni3Ti, and Ti2Ni in the welded region deteriorated these properties, when PWHT was conducted at 400 °C. Due to the vital effects of the PWHT performed after the laser welding, careful control of the PWHT temperature was found to be a prerequisite for achievement of desirable properties in the dissimilar NiTi-304 stainless steel laser-welded wires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Duerig, A. Pelton, and D. Stockel, An Overview of Nitinol Medical Applications, Mater. Sci. Eng. A, 1999, 273–275, p 149–160

    Article  Google Scholar 

  2. N.B. Morgan, Medical Shape Memory Alloy Applications—The Market and Its Products, Mater. Sci. Eng. A, 2004, 378, p 16–23

    Article  Google Scholar 

  3. F. Nematzadeh and S.K. Sadrnezhaad, Effects of the Ageing Treatment on the Superelastic Behavior of a Nitinol Stent for an Application in the Esophageal Duct: A Finite-Element Analysis, Mater. Technol., 2013, 47, p 45–51

    Google Scholar 

  4. S.K. Sadrnezhaad, N.H. Nemati, and R. Bagheri, Improved Adhesion of NiTi Wire to Silicone Matrix for Smart Composite Medical Applications, Mater. Des., 2009, 30, p 3667–3672

    Article  Google Scholar 

  5. T. Shinoda, T. Tsuchiya, and H. Takahashi, Functional Characteristics of Friction Welded Near-Equiatomic TiNi Shape Memory Alloy, Trans. Jap. Weld. Soc., 1991, 22, p 30–36

    Google Scholar 

  6. S. Fukumoto, T. Inoue, S. Mizuno, K. Okita, T. Tomita, and A. Yamamoto, Friction Welding of TiNi Alloy to Stainless Steel Using Ni Interlayer, Sci. Technol. Weld. Join., 2010, 15, p 124–130

    Article  Google Scholar 

  7. A. Ikai, K. Kimura, and H. Tobush, TIG Welding and Shape Memory Effect of TiNi Shape Memory Alloy, J. Intell. Mater. Syst. Str., 1996, 7, p 646–654

    Article  Google Scholar 

  8. C. Van der Eijk, H. Fostervoll, Z.K. Sallom, and O.M. Akselsen, Plasma Welding of NiTi to NiTi, Stainless Steel and Hastelloy C276, in Proceedings of the ASM Materials Sol Conference, October 13–15, 2003 (Pittsburgh, Pennsylvania), p 125–129.

  9. M. Seki, H. Yamamoto, M. Nojiri, K. Uenishi, and K.F. Kobayashi, Brazing of Ti-Ni Shape Memory Alloy with Stainless Steel, J. Jpn. Inst. Metal., 2000, 64, p 632–640

    Google Scholar 

  10. X.M. Qiu, M.G. Li, D.Q. Sun, and W.H. Liu, Study on Brazing of TiNi Shape Memory Alloy with Stainless Steels, J. Mater. Proc. Technol., 2006, 176, p 8–12

    Article  Google Scholar 

  11. H. Gugel, A. Schuermann, and W. Teisen, Laser Welding of NiTi Wires, Mater. Sci. Eng., A, 2008, 481–482, p 668–671

    Article  Google Scholar 

  12. L.A. Vieira, F.B. Fernandes, R.M. Miranda, R.J.C. Silva, L. Quintino, A. Cuesta, and J.L. Ocana, Mechanical Behaviour of Nd: YAG Laser Welded Superelastic NiTi, Mater. Sci. Eng. A, 2011, 528, p 5560–5565

    Article  Google Scholar 

  13. Y.H. Hsu, S.K. Wang, and C. Chen, Effect of CO2 Laser Welding on the Shape-Memory and Corrosion Characteristics of TiNi Alloy, Metall. Mater. Trans. A, 2001, 32, p 569–576

    Article  Google Scholar 

  14. G. Padmanaban and V. Balasubramanian, Optimization of Laser Beam Welding Process Parameters to Attain Maximum Tensile Strength in AZ31B Magnesium Alloy, Opt. Las. Technol., 2010, 42, p 1253–1260

    Article  Google Scholar 

  15. A. Falvo, F.M. Furgiuele, and C. Maletta, Laser Welding of a NiTi Alloy: Mechanical and Shape Memory Behavior, Mater. Sci. Eng. A, 2005, 412, p 235–240

    Article  Google Scholar 

  16. X.J. Yan, D.Z. Yang, and X.P. Liu, Corrosion Behavior of a Laser-Welded NiTi Shape Memory Alloy, Mater. Char., 2007, 58, p 623–628

    Article  Google Scholar 

  17. A. Tuissi, S. Besseghini, T. Ranucci, F. Squatrito, and M. Pozzi, Effect of Nd-YAG Laser Welding on the Functional Properties of the Ni–49.6 at.% Ti, Mater. Sci. Eng. A, 1999, 273–275, p 813–817

    Article  Google Scholar 

  18. G.R. Mirshekari, A. Saatchi, A. Kermanpur, and S.K. Sadrnezhaad, Laser Welding of NiTi Shape Memory Alloy: Comparison of the Similar and Dissimilar Joints to AISI, 304 Stainless Steel, Opt. Las. Technol., 2013, 54, p 151–158

    Article  Google Scholar 

  19. H.M. Li, D.Q. Sun, X.L. Cai, P. Dong, and W.Q. Wang, Laser Welding of TiNi Shape Memory Alloy and Stainless Steel Using Ni Interlayer, Mater. Des., 2012, 39, p 285–293

    Article  Google Scholar 

  20. H.M. Li, D.Q. Sun, X.L. Cai, P. Dong, and X. Gu, Laser Welding of TiNi Shape Memory Alloy and Stainless Steel Using Co filler Metal, Opt. Las. Technol., 2013, 45, p 453–460

    Article  Google Scholar 

  21. M.G. Li, D.Q. Sun, X.M. Qiu, J.B. Liu, K. Miao, and W.C. Wu, Effects of Silver Based Filler Metals on Microstructure and Properties of Laser Brazed Joints Between TiNi Shape Memory Alloy and Stainless Steel, Sci. Technol. Weld. Join., 2007, 12, p 183–188

    Article  Google Scholar 

  22. C.W. Chan, H.C. Man, and T.M. Yue, Effect of Postweld Heat Treatment on the Microstructure and Cyclic Deformation Behavior of Laser-Welded NiTi-Shape Memory Wires, Metall. Mater. Trans. A, 2012, 43A, p 1956–1965

    Article  Google Scholar 

  23. C.W. Chan, H.C. Man, and T.M. Yue, Effect of Post-weld Heat-Treatment on the Oxide Film and Corrosion Behaviour of Laser-Welded Shape Memory NiTi Wires, Corr. Sci., 2012, 56, p 158–167

    Article  Google Scholar 

  24. S. Kou, Welding Metallurgy, 2nd ed., Wiley, New Jersey, 2003

    Google Scholar 

  25. M.S. Laridjani, A. Amadeh, and H. Kashani, Stellite 21 Coatings on AISI, 410 Martensitic Stainless Steel by Gas Tungsten Arc Welding, Mater. Sci. Technol., 2010, 26, p 1184–1190

    Article  Google Scholar 

  26. S.A. Shabalovskaya, Surface, Corrosion, and Biocompatibility Aspects of Nitinol as an Implant Material, Bio-Med. Mater. Eng., 2002, 12, p 69–109

    Google Scholar 

  27. J.R. Groza, M. Eslamloo-Grami, and R. Bandy, The Effect of Thermo-mechanical Treatment on the Pitting Corrosion of Reinforcing Carbon Steel Bars, Mater. Corr., 1993, 44, p 359–366

    Google Scholar 

  28. K.Y. Chiu, F.T. Cheng, and H.C. Man, Corrosion Behavior of AISI, 316L Stainless Steel Surface-Modified with NiTi, Surf. Coat. Technol., 2006, 200, p 6054–6061

    Article  Google Scholar 

  29. Z. Szklarska-Smialowska, Pitting Corrosion of Aluminum, Corr. Sci., 1999, 41, p 1743–1767

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Mirshekari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirshekari, G.R., Saatchi, A., Kermanpur, A. et al. Effect of Post Weld Heat Treatment on Mechanical and Corrosion Behaviors of NiTi and Stainless Steel Laser-Welded Wires. J. of Materi Eng and Perform 25, 2395–2402 (2016). https://doi.org/10.1007/s11665-016-2034-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2034-3

Keywords

Navigation