Skip to main content
Log in

Nanostructural Free-Volume Effects in Humidity-Sensitive MgO-Al2O3 Ceramics for Sensor Applications

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Technologically modified spinel MgO-Al2O3 ceramics were prepared from Al2O3 and 4MgCO3·Mg(OH)2·5H2O powders at sintering temperatures of 1200, 1300, and 1400 °C. Free-volume structural effects in MgO-Al2O3 ceramics and their electrophysical properties were studied using combined x-ray diffraction, scanning electron microscopy, Hg-porosimetry, and positron annihilation lifetime spectroscopy. It is shown that increasing of sintering temperature from 1200 to 1400 °C results in the transformation of pore size distribution in ceramics from tri- to bi-modal including open macro- and meso(micro)pores with sizes from ten to hundreds nm and nanopores with sizes up to a few nm. Microstructure of these ceramics is improved with the increase of sintering temperature, which results in decreased amount of additional phases located near grain boundaries. These phase extractions serve as specific trapping centers for positrons penetrating the ceramics. The positron trapping and ortho-positronium decaying components are considered in the mathematical treatment of the measured spectra. Classic Tao-Eldrup model is used to draw the correlation between the ortho-positronium lifetime and the size of nanopores, which is complementary to porosimetry data. The studied ceramics with optimal nanoporous structure are highly sensitive to humidity changes in the region of 31-96% with minimal hysteresis in adsorption-desorption cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Z. Chen and C. Lu, Humidity Sensors: A Review of Materials and Mechanisms, Sensor Lett., 2005, 3(4), p 274–295

    Article  Google Scholar 

  2. B.M. Kulwicki, Humidity Sensors, J. Am. Ceram. Soc., 1991, 74(4), p 697–708

    Article  Google Scholar 

  3. B.-O.D. Velev and E.W. Kaler, Structured Porous Materials via Colloidal Crystal Templating: From Inorganic Oxides to Metals, Adv. Mater., 2000, 12(7), p 531–534

    Article  Google Scholar 

  4. D.-H. Vua, K-Sh Wang, and B.H. Bac, Humidity Control Porous Ceramics Prepared from Waste and Porous Materials, Mater. Lett., 2011, 65, p 940–943

    Article  Google Scholar 

  5. I.C. Cosentino, E.N.S. Muccillo, and R. Muccillo, The Influence of Fe2O3 in the Humidity Sensor Performance of ZrO2:TiO2-Based Porous Ceramics, Mater. Chem. Phys., 2007, 103, p 407–414

    Article  Google Scholar 

  6. C. Cantalini and M. Pelino, Microstructure and Humidity-Sensitive Characteristics of a-Fe2O3 Ceramic Sensor, J. Am. Ceram. Soc., 1992, 75(3), p 546–551

    Article  Google Scholar 

  7. K.-S. Chou, T.-K. Lee, and F.-J. Liu, Sensing Mechanism of a Porous Ceramic as Humidity Sensor, Sens. Actuators B, 1999, 56, p 106–111

    Article  Google Scholar 

  8. J.B. Silva, W. de Brito, and N.D.C. Mohallem, Influence of Heat Treatment on Cobalt Ferrite Ceramic Powders, Mater. Sci. Eng. B, 2004, 112, p 182–187

    Article  Google Scholar 

  9. G. Gusmano, G. Montesperelli, E. Traversa, and G. Mattogno, Microstructure and Electrical Properties of MgAl2O4 Thin Films for Humidity Sensing, J. Am. Ceram. Soc., 1993, 76(3), p 743–750

    Article  Google Scholar 

  10. G. Gusmano, G. Montesperelli, E. Traversa, A. Bearzotti, G. Petrocco, A. D’Amico, and C. Di Natale, Magnesium-Aluminium Spinel as Humidity Sensor, Sens. Actuators B, 1992, 7, p 460–463

    Article  Google Scholar 

  11. T. Seiyama, N. Yamazoe, and H. Arai, Ceramic Humidity Sensors, Sens. Actuators, 1983, 4, p 85–96

    Article  Google Scholar 

  12. P.M. Weaver, M.G. Cain, M. Stewart, A. Anson, J. Franks, I.P. Lipscomb, J.P. McBride, D. Zheng, and J. Swingler, The Effects of Porosity, Electrode and Barrier Materials on the Conductivity of Piezoelectric Ceramics in High Humidity and DC Electric Field, Smart Mater. Struct., 2012, 21, p 045012–045019

    Article  Google Scholar 

  13. G.S. Armatas, C.E. Salmas, M.G. Louloudi, P. Androutsopoulos, and P.J. Pomonis, Relationships Among Pore Size, Connectivity, Dimensionality of Capillary Condensation, and Pore Structure Tortuosity of Functionalized Mesoporous Silica, Langmuir, 2003, 19, p 3128–3136

    Article  Google Scholar 

  14. M.A. Kashi, A. Ramazani, H. Abbasian, and A. Khayyatian, Capacitive Humidity Sensors Based on Large Diameter Porous Alumina Prepared by High Current Anodization, Sens. Actuators A, 2012, 174, p 69–74

    Article  Google Scholar 

  15. H. Klym, A. Ingram, I. Hadzaman, and O. Shpotyuk, Evolution of Porous Structure and Free-Volume Entities in Magnesium Aluminate Spinel Ceramics, Ceram. Int., 2014, 40(6), p 8561–8567

    Article  Google Scholar 

  16. H. Klym, A. Ingram, O. Shpotyuk, J. Filipecki, and I. Hadzaman, Extended Positron-trapping Defects in Insulating MgAl2O4 Spinel-type Ceramics, Phys. Status Solidi c, 2007, 4(3), p 715–718

    Article  Google Scholar 

  17. H. Klym, I. Hadzaman, and O. Shpotyuk, Influence of Sintering Temperature on Pore Structure and Electrical Properties of Technologically Modified MgO-Al2O3 Ceramics, Mater. Sci. (Medžiagotyra), 2015, 21, p 92–95

    Google Scholar 

  18. K. Asami, S. Mitani, H. Fujimori, S. Ohnuma, and T. Masumoto, Characterization of Co-Al-O Magnetic Thin Films by Combined Use of XPS, XRD and EPMA, Surf. Interface Anal., 1999, 28(1), p 250–253

    Article  Google Scholar 

  19. K. Asami and T. Ohnuma, XPS and X-ray Diffraction Characterization of Thin Co-Al-N Alloy Films Prepared by Reactive Sputtering Deposition, Surf. Interface Anal., 1998, 26(9), p 659–666

    Article  Google Scholar 

  20. S. Bellucci, I. Bolesta, I. Karbovnyk, R. Hrytskiv, G. Fafilek, and A.I. Popov, Microstructure of Ag2BI4 (B = Ag, Cd) Superionics Studied by SEM, Impedance Spectroscopy and Fractal Dimension Analysis, J. Phys., 2008, 20(47), p 474211

    Google Scholar 

  21. P. Savchyn, I. Karbovnyk, V. Vistovskyy, A. Voloshinovskii, V. Pankratov, M. Cestelli Guidi, C. Mirri, O. Myahkota, A. Riabtseva, N. Mitina, A. Zaichenko, and A.I. Popov, Vibrational Properties of LaPO4 Nanoparticles in Mid- and Far-Infrared Domain, J. Appl. Phys., 2012, 112, p 124309

    Article  Google Scholar 

  22. I. Karbovnyk, S. Piskunov, I. Bolesta, S. Bellucci, M. Cestelli Guidi, M. Piccinini, E. Spohr, and A.I. Popov, Far IR Spectra of Ag2CdI4 at Temperature Range 10–420 K: Complementary Experimental and First-Principle Theoretical Study, Eur. Phys. J. B, 2009, 70(4), p 443–447

    Article  Google Scholar 

  23. A. Voloshynovskii, P. Savchyn, I. Karbovnyk, S. Myagkota, M. CestelliGuidi, M. Piccinini, and A.I. Popov, CsPbCl3 Nanocrystals Dispersed in the Rb0,8Cs0,2Cl Matrix Studied by Far-Infrared Spectroscopy, Solid State Commun., 2009, 149(15–16), p 593–597

    Article  Google Scholar 

  24. G. de With and H.J. Glass, Reliability and Reproducibility of Mercury Intrusion Porosimetry, J. Eur. Ceram. Soc., 1997, 17, p 753–757

    Article  Google Scholar 

  25. S. Brunauer, P.H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc., 1938, 60, p 309

    Article  Google Scholar 

  26. E.P. Barrett, P.H. Joyner, and P.P. Halenda, The Determination of Pore Volume and Area Distributions in Porous Substances, J. Am. Chem. Soc., 1951, 73, p 373

    Article  Google Scholar 

  27. F. Tang, H. Fudouzi, T. Uchikoshi, and Y. Sakka, Preparation of Porous Materials with Controlled Pore Size and Porosity, J. Eur. Ceram. Soc., 2004, 24, p 341–344

    Article  Google Scholar 

  28. P. Davies and V. Randle, Grain Boundary Engineering and the Role of the Interfacial Plane, Mater. Sci. Technol., 2001, 17, p 615–626

    Google Scholar 

  29. A.Z.M.S. Rahman, Z. Li, X. Cao, B. Wang, L. Wei, Q. Xu, and K. Atobe, Positron Annihilation Study of Vacancy-Type Defects in Fast-Neutron-Irradiated MgO·nAl2O3, Nucl. Instrum. Methods Phys. Res. B, 2014, 335, p 70–73

    Article  Google Scholar 

  30. A. Bondarchuk, O. Shpotyuk, A. Glot, and H. Klym, Current Saturation in In2O3-SrO Ceramics: A Role of Oxidizing Atmosphere, Rev. Mex. Fis., 2012, 58, p 313–316

    Google Scholar 

  31. Y.C. Jean, P.E. Mallon, and D.M. Schrader, Principles and Application of Positron and Positronium Chemistry, World Scientific, Singapore, 2003

    Book  Google Scholar 

  32. O.E. Mogensen, Positron Annihilation in Chemistry, Springer, Berlin, 1995

    Book  Google Scholar 

  33. H. Nakanishi, Y.C. Jean, D.M. Schrader, and Y.C. Jean, In Positron and Positronium Chemistry, Elsevier, Amsterdam, 1998

    Google Scholar 

  34. G. Dlubek, A. Sen Gupta, J. Pionteck, R. Hassler, R. Krause-Rehberg, H. Kaspar, and K.H. Lochhaas, High-Pressure Dependence of the Free Volume in Fluoelastomers from Positron Lifetime and PVT Experiments, Macromolecules, 2005, 38(2), p 429–437

    Article  Google Scholar 

  35. J. Rodriguez-Carvajal, Recent Developments of the Program FULLPROF, Commission on Powder Diffraction (IUCr), Newsletter, 2001, 26, p 12–19

    Google Scholar 

  36. O. Shpotyuk, V. Balitska, M. Brunner, I. Hadzaman, and H. Klym, Thermally-Induced Electronic Relaxation in Structurally-Modified Cu0.1Ni0.8Co0.2Mn1.9O4 Spinel Ceramics, Phys. B, 2015, 459, p 116–121

    Article  Google Scholar 

  37. O. Shpotyuk, V. Balitska, I. Hadzaman, and H. Klym, Sintering-Modified Mixed Ni-Co-Cu Oxymanganospinels for NTC Electroceramics, J. Alloy. Compd., 2011, 509(2), p 447–450

    Article  Google Scholar 

  38. H. Klym, I. Hadzaman, O. Shpotyuk, Q. Fu, W. Luo, and J. Deng, Integrated Thick-Film p-i-p+ Structures Based on Spinel Ceramics, Solid State Phenom., 2013, 200, p 156–161

    Article  Google Scholar 

  39. H. Klym and A. Ingram, Unified Model of Multichannel Positron Annihilation in Nanoporous Magnesium Aluminate Ceramics, J. Phys., 2007, 79(1), p 012014–0102014

    Google Scholar 

  40. I. Karbovnyk, I. Bolesta, I. Rovetskii, S. Velgosh, and H. Klym, Studies of CdI2-Bi3 Microstructures with Optical Methods, Atomic Force Microscopy and Positron Annihilation Spectroscopy, Mater. Sci. Pol., 2014, 32(3), p 391–395

    Article  Google Scholar 

  41. H. Klym, A. Ingram, O. Shpotyuk, J. Filipecki, and I. Hadzaman, Structural Studies of Spinel Manganite Ceramics with Positron Annihilation Lifetime Spectroscopy, J. Phys., 2011, 289(1), p 012010

    Google Scholar 

  42. J. Filipecki, A. Ingram, H. Klym, O. Shpotyuk, and M. Vakiv, Water-Sensitive Positron Trapping Modes in Nanoporous Magnesium Aluminate Ceramics, J. Phys., 2007, 79(1), p 012015

    Google Scholar 

  43. H. Klym, A. Ingram, O. Shpotyuk, J. Filipecki, and I. Hadzaman, Extended Defects in Insulating MgAl2O4 Ceramic Materials Studied by PALS Methods, IOP Conf. Ser., 2010, 15(1), p 012044

    Article  Google Scholar 

  44. J. Kansy, Microcomputer Program for Analysis of Positron Annihilation Lifetime Spectra, Nucl. Instrum. Method Phys. Res. A, 1996, 374, p 235–244

    Article  Google Scholar 

  45. O. Shpotyuk, L. Calvez, E. Petracovschi, H. Klym, A. Ingram, and P. Demchenko, Thermally-Induced Crystallization Behaviour of 80GeSe2–20Ga2Se3 Glass as Probed by Combined X-ray Diffraction and PAL Spectroscopy, J. Alloy. Compd., 2014, 582, p 323–327

    Article  Google Scholar 

  46. H. Klym, A. Ingram, O. Shpotyuk, L. Calvez, E. Petracovschi, B. Kulyk, R. Serkiz, and R. Szatanik, “Cold” Crystallization in Nanostructurized 80GeSe2-20Ga2Se3 Glass, Nanoscale Res. Lett., 2015, 10(49), p 1–8

    Google Scholar 

  47. H. Klym, A. Ingram, O. Shpotyuk, R. Szatanik, E. Petracovschi, L. Calvez, and C. Lin, Positron Annihilation in IR Transmitting GeS2-Ga2S3 Glasses, Solid State Phenom., 2015, 230, p 221–227

    Article  Google Scholar 

  48. O. Shpotyuk, J. Filipecki, A. Ingram, R. Golovchak, M. Vakiv, H. Klym, V. Balitska, M. Shpotyuk, and A. Kozdras, Positronics of Subnanometer Atomistic Imperfections as High-Informative Characterization Tool in Nanomaterials Science, Nanoscale Res. Lett., 2015, 10(77), p 1–5

    Google Scholar 

  49. R. Krause-Rehberg and H.S. Leipner, Positron annihilation in semiconductors. Defect studies, Springer, Berlin, 1999

    Book  Google Scholar 

  50. P.M.G. Nambissan, C. Upadhyay, and H.C. Verma, Positron Lifetime Spectroscopic Studies of Nanocrystalline ZnFe2O4, J. Appl. Phys., 2003, 93, p 6320

    Article  Google Scholar 

  51. M.M. Kohonen and H.K. Christenson, Capillary Condensation of Water Between Rinsed Mica Surfaces, Langmuir, 2000, 16, p 7285–7288

    Article  Google Scholar 

  52. A. Grosman and C. Ortega, Nature of Capillary Condensation and Evaporation Processes in Ordered Porous Materials, Langmuir, 2005, 21, p 10515–10521

    Article  Google Scholar 

  53. S.J. Tao, Positronium Annihilation in Molecular Substance, J. Chem. Phys., 1972, 56(11), p 5499–5510

    Article  Google Scholar 

  54. M. Eldrup, D. Lightbody, and J.N. Sherwood, The Temperature Dependence of Positron Lifetimes in Solid Pivalic Acid, Chem. Phys., 1981, 63, p 51–58

    Article  Google Scholar 

  55. R. Golovchak, S. Wang, H. Jain, and A. Ingram, Positron Annihilation Lifetime Spectroscopy of Nano/Macroporous Bioactive Glasses, J. Mater. Res., 2012, 27(19), p 2561–2567

    Article  Google Scholar 

Download references

Acknowledgment

H. Klym thank the Lviv Polytechnic University under Doctoral Program and support via Project DB/KIBER (No 0115U000446).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Klym.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klym, H., Ingram, A., Shpotyuk, O. et al. Nanostructural Free-Volume Effects in Humidity-Sensitive MgO-Al2O3 Ceramics for Sensor Applications. J. of Materi Eng and Perform 25, 866–873 (2016). https://doi.org/10.1007/s11665-016-1931-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-1931-9

Keywords

Navigation