Skip to main content
Log in

Studies on Thermal and Mechanical Properties of Epoxy-Silicon Oxide Hybrid Materials

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Ultrasonic dual mixing (UDM) process involving ultrasonic vibration with simultaneous stirring is used to prepare epoxy-silicon oxide hybrid materials with inorganic nanoscale building blocks by incorporating nanoscale silicon oxide network in epoxy matrix. The silicon oxide network is obtained from tetraethoxysilane (TEOS) by using the in situ sol-gel process. Same epoxy-silica hybrid materials were also prepared by mixing with simple impeller stirring, and its properties were compared with the material of same composition prepared by the UDM process. The epoxy-silicon oxide hybrid materials are characterized by using FT-IR, DSC, FESEM, and XRD techniques. The glass transition temperature, tensile strength, and elastic modulus of the epoxy-silicon oxide hybrid materials treated by UDM process are found comparatively better than those of the materials processed by a rotating impeller. FESEM studies confirm that amount of TEOS varies the distribution and size of silicon oxide network, which remains relatively finer at lower content of TEOS. Significant improvement of thermal and mechanical properties of the neat epoxy is noted in the presence of 3.05 wt.% TEOS content in it is giving rise to the formation of inorganic building block of silicon oxide of size 88 ± 45 nm in the matrix. In this regard, the use of UDM process is found superior to mixing by simple impeller stirring for enhancement of properties of epoxy-silicon oxide hybrid materials. Lowering of properties of the epoxy-silicon oxide hybrid materials with TEOS addition beyond 3.05 wt.% up to 6.1 wt.% occurs primarily due to increase of amount and size (up to 170 ± 82 nm) of the inorganic building block in the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Zhao, L.S. Schadler, H. Hillborg, and T. Auletta, Improvements and Mechanisms of Fracture and Fatigue Properties of Well-Dispersed Alumina/Epoxy Nanocomposites, Compos. Sci. Technol., 2008, 68, p 2976–2982

    Article  Google Scholar 

  2. C. Chen, R.S. Justice, D.W. Schaefer, and J.W. Baur, Highly Dispersed Nanosilica-Epoxy Resins with Enhanced Mechanical Properties, Polymer, 2008, 49, p 3805–3815

    Article  Google Scholar 

  3. M. Blanco, M.A. Corcuera, C.C. Riccardi, and I. Mondragon, Mechanistic Kinetic Model of an Epoxy Resin Cured with a Mixture of Amines of Different Functionalities, Polymer, 2005, 46, p 7989–8000

    Article  Google Scholar 

  4. T. Maity, B.C. Samanta, S. Dalai, and A.K. Banthia, Curing Study of Epoxy Resin by New Aromatic Amine Functional Curing Agents Along with Mechanical And Thermal Evaluation, Mater. Sci. Eng. A, 2007, 464, p 38–46

    Article  Google Scholar 

  5. H. Zou, S. Wu, and J. Shen, Polymer/Silica Nanocomposites: Preparation Characterization, Properties, and Applications, Chem. Rev., 2008, 108, p 3893–3957

    Article  Google Scholar 

  6. S. Ponyrko, L. Kobera, J. Brus, and L. Matejka, Epoxy-Silica Hybrids by Nonaqueous Sole Gel Process, Polymer, 2013, 54, p 6271–6282

    Article  Google Scholar 

  7. L. Matejka, K. Dusek, J. Plegtil, J. Kriz, and F. Lednicklj, Formation and Structure of the Epoxy-Silica Hybrids, Polymer, 1998, 40, p 171–181

    Article  Google Scholar 

  8. H. Shi, F. Liu, L. Yang, and E. Han, Shi H, Characterization of Protective Performance of Epoxy Reinforced with Nanometer-Sized TiO2 and SiO2, Prog. Org. Coat., 2008, 62, p 359–368

    Article  Google Scholar 

  9. J.T. Saavedra, J.L. Beceiro, S. Naya, and R. Artiaga, Effect of Silica Content on Thermal Stability of Fumed Silica/Epoxy Composites, Polym. Degrad. Stab., 2008, 93, p 2133–2137

    Article  Google Scholar 

  10. M. Conradi, M. Zorko, A. Kocijan, and I. Verpoest, Mechanical Properties of Epoxy Composites Reinforced with a Low Volume Fraction of Nano Silica Fillers, Mater. Chem. Phys., 2013, 137, p 910–915

    Article  Google Scholar 

  11. T. Adachi, M. Osaki, W. Araki, and S.C. Kwon, Fracture Toughness of Nano- and Micro-Spherical Silica-Particle-Filled Epoxy Composites, Acta Mater., 2008, 56, p 2101–2109

    Article  Google Scholar 

  12. P. Dittanet and R.A. Pearson, Effect of Silica Nanoparticle Size on Toughening Mechanisms of Filled Epoxy, Polymer, 2012, 53, p 1890–1905

    Article  Google Scholar 

  13. G. Ragosta, M. Abbate, P. Musto, G. Scarinzi, and L. Mascia, Epoxy-Silica Particulate Nanocomposites: Chemical Interactions, Reinforcement and Fracture Toughness, Polymer, 2005, 46, p 10506–10516

    Article  Google Scholar 

  14. S.R. Lu, H.L. Zhang, C.X. Zhao, and X.Y. wang, Preparation and Characterization of Epoxy Silica Hybrid Materials by the Sol-Gel Process, J. Mater. Sci., 2005, 40, p 1079–1085

    Article  Google Scholar 

  15. H. Zhang, L.C. Tang, Z. Zhang, K. Friedrich, and S. Sprenger, Fracture Behaviours of In-Situ Silica Nanoparticle-Filled Epoxy at Different Temperatures, Polymer, 2008, 49, p 3816–3825

    Article  Google Scholar 

  16. L. Matejka, O. Dukh, and J. Kolarik, Reinforcement of Crosslinked Rubbery Epoxies by In-Situ Formed Silica, Polymer, 2000, 41, p 1449–1459

    Article  Google Scholar 

  17. S. Zeng, C. Reyes, J. Liu, P.A. Rodgers, S.H. Wentworth, and L. Sun, Facile Hydroxylation of Halloysite Nanotubes for Epoxy Nanocomposite Applications, Polymer, 2014, 55, p 6519–6528

    Article  Google Scholar 

  18. H. Miyagawa and L.T. Drzal, Thermo-Physical and Impact Properties of Epoxy Nanocomposites Reinforced by Single-Wall Carbon Nanotubes, Polymer, 2004, 45, p 5163–5170

    Article  Google Scholar 

  19. A. Chatterjee and M.S. Islam, Fabrication and Characterization of TiO2 Epoxy Nanocomposite, Mater. Sci. Eng. A, 2008, 487, p 574–585

    Article  Google Scholar 

  20. P.K. Ghosh, A. Pathak, M.S. Goyat, and S. Halder, Influence of Nanoparticle Weight Fraction on Morphology and Thermal Properties of Epoxy/TiO2 Nanocomposite, J. Reinf. Plast. Compos., 2012, 31, p 1088–1180

    Article  Google Scholar 

  21. P.K. Ghosh, M.S. Goyat, D. Mishra, and R. Nagori, Physical and Mechanical Properties of Epoxy-Nanoparticulate Composite Adhesive, Adv. Mater. Res., 2012, 585, p 297–300

    Article  Google Scholar 

  22. M.S. Goyat, S. Ray, and P.K. Ghosh, Innovative Application of Ultrasonic Mixing to Produce Homogeneously Mixed Nanoparticulate-Epoxy Composite of Improved Physical Properties, Compos. A, 2011, 42, p 1421–1431

    Article  Google Scholar 

  23. S. Halder, P.K. Ghosh, M.S. Goyat, and S. Ray, Ultrasonic Dual Mode Mixing and its Effect on Tensile Properties of SiO2-Epoxy Nanocomposite, J. Adhes. Sci. Technol., 2013, 27, p 111–124

    Article  Google Scholar 

  24. T. Nazir, A. Afzal, H.M. Siddiqi, Z. Ahmad, and M. Dumon, Thermally and Mechanically Superior Hybrid Epoxy-Silica Polymer films Via Sol-Gel Method, Prog. Org. Coat., 2010, 69, p 100–106

    Article  Google Scholar 

  25. S. Kang, S.I. Hong, C.R. Choe, M. Park, S. Rim, and J. Kim, Preparation and Characterization of Epoxy Composites Filled with Functionalized Nanosilica Particles Obtained Via Sol-Gel Process, Polymer, 2001, 42, p 879–887

    Article  Google Scholar 

  26. B.E. Yoldas, Monolithic Glass Formation by Chemical Polymerization, J. Mater. Sci., 1979, 14, p 1843–1849

    Article  Google Scholar 

  27. A. Yasmin, J.L. Abot, and I.M. Daniel, Processing of Clay/Epoxy Nanocomposites by Shear Mixing, Scr. Mater., 2003, 49, p 81–86

    Article  Google Scholar 

  28. L. Tammaro, V. Vittoria, and V. Bugatti, Dispersion of Modified Layered Double Hydroxides in Poly(ethylene terephthalate) by High Energy Ball Milling for Food Packaging Applications, Eur. Polymer J., 2014, 52, p 172–180

    Article  Google Scholar 

  29. D. Olmos, C.D. Nguez, P.D. Castrillo, and J.G. Benito, Crystallization and Final Morphology of HDPE: Effect of the High Energy Ball Milling and the Presence of TiO2 Nanoparticles, Polymer, 2009, 50, p 1732–1742

    Article  Google Scholar 

  30. M. Preghenella, A. Pegoretti, and C. Migliaresi, Thermo-Mechanical Characterization of Fumed Silica-Epoxy Nanocomposites, Polymer, 2005, 46, p 12065–12072 (in English)

    Article  Google Scholar 

  31. D.A. Donatti and D.R. Vollet, Effects of the Water Quantity on the Solventless TEOS Hydrolysis Under Ultrasound Stimulation, J. Sol-Gel. Sci. Technol., 2000, 17, p 19–24

    Article  Google Scholar 

  32. G.V. Krylova, Y.I. Gnatyuk, N.P. Smirnova, A.M. Eremenko, and V.M. Gunko, Ag Nanoparticles Deposited onto Silica, Titania, and Zirconia Mesoporous Films Synthesized by Sol-Gel Template Method, J. Sol-Gel. Sci. Technol., 2009, 50, p 216–228

    Article  Google Scholar 

  33. S. Lu, H. Zhang, C. Zhao, and X. Wang, New Epoxy/Silica-Titania Hybrid Materials Prepared by the Sol-Gel Process, J. Appl. Polym. Sci., 2006, 101, p 1075–1081

    Article  Google Scholar 

  34. S.R. Lu, C. Wei, J.H. Yu, X.W. Yang, and Y.M. Jiang, Preparation and Characterization of Epoxy Nanocomposites by Using PEO-Grafted Silica Particles as Modifier, J. Mater. Sci., 2007, 42, p 6708–6715

    Article  Google Scholar 

  35. J. Rieger, Data Interpretation: The Glass Transition Temperature Tg of Polymers Comparison of the Values from Differential Thermal Analysis (DTA, DSC) and Dynamic Mechanical Measurements (Torsion Pendulum), Polym. Test., 2001, 20, p 199–204

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to Science & Engineering Research Board (SERB), (Order No.SR/S3/ME/0028/2011) Department of Science & Technology (DST) of India for providing financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, P.K., Kumar, K. & Kumar, A. Studies on Thermal and Mechanical Properties of Epoxy-Silicon Oxide Hybrid Materials. J. of Materi Eng and Perform 24, 4440–4448 (2015). https://doi.org/10.1007/s11665-015-1719-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1719-3

Keywords

Navigation