Skip to main content
Log in

Fatigue Crack Growth Mechanisms for Nickel-based Superalloy Haynes 282 at 550-750 °C

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The fatigue crack growth rates for nickel-based superalloy Haynes 282 were measured at 550, 650, and 750 °C using compact tension specimens with a load ratio of 0.1 and cyclic loading frequencies of 25 and 0.25 Hz. The crack path was observed to be primarily transgranular for all temperatures, and the observed effect of increasing temperature was to increase the fatigue crack growth rates. The activation energy associated with the increasing crack growth rates over these three temperatures was calculated less than 60 kJ/mol, which is significantly lower than typical creep or oxidation mechanisms; therefore, creep and oxidation cannot explain the increase in fatigue crack growth rates. Transmission electron microscopy was done on selected samples removed from the cyclic plastic zone, and a trend of decreasing dislocation density was observed with increasing temperature. Accordingly, the trend of increasing crack growth rates with increasing temperature was attributed to softening associated with thermally assisted cross slip and dislocation annihilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ΔK :

Stress intensity range

R :

Load ratio

da/dN :

Fatigue crack growth rate

k FCP f (a):

A term containing all non-temperature-dependent terms related to fracture mechanics (i.e., stress intensity range, load ratio, yield strength, crack length, etc.)

Q :

Apparent activation energy

R g :

Universal gas constant

T :

Temperature

N :

Normalization factor

W :

Compact tension specimen width

B :

Compact tension specimen thickness

F :

Frequency

References

  1. P.D. Jablonski, J.A. Hawk, C.J. Cowen, and P.J. Maziasz, Processing of Advanced Cast Alloys for A-USC Steam Turbine Applications, J. Mater., 2012, 64(2), p 271–279. doi:10.1007/s11837-012-0241-4

    Google Scholar 

  2. D.A. Woodford, Gas phase Embrittlement and Time Dependent Cracking of Nickel Based Superalloys, Energy Mater. Mater. Sci. Eng. Energy Syst., 2006, 1(1), p 59–70. doi:10.1179/174892306X99679

    Article  Google Scholar 

  3. K.A. Rozman, J.J. Kruzic, and J.A. Hawk, Fatigue Crack Growth Behavior of Nickel-Base Superalloy Haynes 282 at 550-750 °C, J. Mater. Eng. Perform., 2015, 24(8), p 2841–2846

    Article  Google Scholar 

  4. Pike, L.M. (2006). Haynes 282 alloy—A New Wrought Superalloy Designed for Improved Creep Strength and Fabricability (#GT2006-91204), ASME Turbo Expo 2006: Power for Land, Sea and Air. (pp. 1–9). Barcelona, Spain.

  5. Haynes® International, (2006). Haynes® 282® Alloy. Retrieved from http://www.haynesintl.com/pdf/h3173.pdf. Accessed January 1st 2015.

  6. Viswanathan, R., Hawk, J.A., Schwant, R.D., Totemeier, T., Goodstine, S., McNally, M., and Allen, D. B. (2009). Steam Turbine Materials for Ultrasupercritical Coal Power Plants. pp. 1–535. Independence, OH.

  7. Rozman, K.A. (2014) Characterization of High Temperature Fatigue Mechanisms in Haynes 282 Nickel Based Superalloy. Doctoral dissertation, Oregon State University

  8. ASTM Standard E647—11: Standard Test Method for Measurement of Fatigue Crack Growth Rates. ASTM International, West Conshohocken, PA. 2011, doi: 10.1520/E0647-13AE01, www.astm.org.

  9. S. Vyazovkin, Computational Aspects of Kinetic Analysis. Part C. The ICTAC Kinetics Project—The Light at the End of the Tunnel?, Thermochim. Acta, 2000, 355(1–2), p 155–163. doi:10.1016/S0040-6031(00)00445-7

    Article  Google Scholar 

  10. M.J. Starink, The Determination of Activation Energy From Linear Heating Rate Experiments: A Comparison of the Accuracy of Conversion Methods, Thermochim. Acta, 2003, 404(1–2), p 163–176. doi:10.1016/S0040-6031(03)00144-8

    Article  Google Scholar 

  11. E.J. Mittemeijer, Analysis of the Kinetics of Phase Transformations, J. Mater. Sci., 1992, 27(15), p 3977–3987. doi:10.1007/BF01105093

    Article  Google Scholar 

  12. T.G. Langdon, A Method of Distinguishing Between Diffusion Creep and Harper-Dorn Creep at Low Stress Levels, Scr. Mater., 1996, 35(6), p 733–737. doi:10.1016/1359-6462(96)00219-9

    Article  Google Scholar 

  13. M.J. Starink and P.A.S. Reed, Thermal Activation of Fatigue Crack Growth: Analyzing the Mechanisms of Fatigue Crack Propagation in Superalloys, Mater. Sci. Eng. A, 2008, 491(1–2), p 279–289. doi:10.1016/j.msea.2008.02.016

    Article  Google Scholar 

  14. C. Zener and J.H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15(1), p 22–32. doi:10.1063/1.1707363

    Article  Google Scholar 

  15. D. Gustafsson, J. Moverare, S. Johansson, M. Hörnqvist, K. Simonsson, S. Sjöström, and B. Sharifimajda, Fatigue Crack Growth Behavior of Inconel 718 with High Temperature Hold Times, Proc. Eng., 2010, 2, p 1095–1104. doi:10.1016/j.proeng.2010.03.118

    Article  Google Scholar 

  16. J.E. King, Fatigue Crack Propagation in Nickel-Base Superalloys—Effects of Microstructure, Load Ratio, and Temperature, Mater. Sci. Technol., 1987, 3(9), p 750–764. doi:10.1179/026708387790329766

    Article  Google Scholar 

  17. E. Andrieu, R. Molins, H. Ghonem, and A. Pineau, Intergranular Crack Tip Oxidation Mechanism in a Nickel-Based Superalloy, Mater. Sci. Eng. A, 1992, 154(1), p 21–28. doi:10.1016/0921-5093(92)90358-8

    Article  Google Scholar 

  18. R. Jiang, S. Everitt, M. Lewandowski, N. Gao, and P.A.S. Reed, Grain Size Effects in a Ni-Based Turbine Disc Alloy in the Time and Cycle Dependent Crack Growth Regimes, Int. J. Fatigue, 2014, 62, p 217–227. doi:10.1016/j.ijfatigue.2013.07.014

    Article  Google Scholar 

  19. S. Everitt, R. Jiang, N. Gao, M.J. Starink, J.W. Brooks, and P.A.S. Reed, Comparison of Fatigue Crack Propagation Behaviour in Two Gas Turbine Disc Alloys Under Creep-Fatigue Conditions: Evaluating Microstructure, Environment And Temperature Effects, Mater. Sci. Technol., 2013, 29(7), p 781–787. doi:10.1179/1743284713Y.0000000229

    Article  Google Scholar 

  20. R. Peraldi, D. Monceau, and B. Pieraggi, The Nickel, Model Material for the High Temperature Oxidation Studies: First Steps Towards Predictive Modelling, Revue de Métallurgie, 2005, 102(2), p 135–145. doi:10.1051/metal:2005115

    Article  Google Scholar 

  21. J. Byrne, Elevated Temperature Fatigue Crack Growth Under Dwell Conditions in Waspaloy, Int. J. Fatigue, 1997, 19(5), p 359–367. doi:10.1016/S0142-1123(97)00056-X

    Article  Google Scholar 

  22. J. Dahal, K. MacIejewski, and H. Ghonem, Loading Frequency and Microstructure Interactions in Intergranular Fatigue Crack Growth in a Disk Ni-Based Superalloy, Int. J. Fatigue, 2013, 57, p 93–102

    Article  Google Scholar 

  23. X. Liu, B. Kang, and K.M. Chang, The Effect of Hold-Time on Fatigue Crack Growth Behaviors of WASPALOY Alloy at Elevated Temperature, Mater. Sci. Eng. A, 2003, 340(1–2), p 8–14. doi:10.1016/S0921-5093(02)00074-6

    Article  Google Scholar 

  24. A. Saxena, Nonlinear Fracture Mechanics for Engineers, CRC Press LLC, Boca Raton, 1998

    Google Scholar 

  25. R. Weast, Handbook of Chemistry and Physics, 66th ed., CRC Press, Boca Raton, 1985

    Google Scholar 

  26. S.K. Sondhi, B.F. Dyson, and M. McLean, Tension-Compression Creep Asymmetry in a Turbine Disc Superalloy: Roles of Internal Stress and Thermal Ageing, Acta Mater., 2004, 52(7), p 1761–1772. doi:10.1016/j.actamat.2003.12.017

    Article  Google Scholar 

  27. T. Rasmussen, T. Vegge, and T. Leffers, Simulation of Structure and Annihilation of Screw Dislocation Dipoles, Philos. Mag. A, 2000, 80(5), p 1273–1290. doi:10.1080/01418610050024585

    Article  Google Scholar 

  28. T. Leffers and O.B. Pedersen, The Activation Energy for the fcc Rolling-Texture Transition as Related to the Activation Energy for Cross Slip, Scr. Mater., 2002, 46(10), p 741–746. doi:10.1016/S1359-6462(02)00065-9

    Article  Google Scholar 

  29. P. Pauš, J. Kratochvíl, and M. Beneš, A Dislocation Dynamics Analysis of the Critical Cross-Slip Annihilation Distance and the Cyclic Saturation Stress in fcc Single Crystals at Different Temperatures, Acta Mater., 2013, 61(20), p 7917–7923. doi:10.1016/j.actamat.2013.09.032

    Article  Google Scholar 

  30. B. Tippelt, J. Breitschneider, and P. Hähner, The Dislocation Microstructure of Cyclically Deformed Nickel Single Crystals at Different Temperatures, Phys. Status Solidi (a), 1997, 163(1), p 11–26

    Article  Google Scholar 

  31. L.M. Brown, A Dipole Model for the Cross-Slip of Screw Dislocations in fcc Metals, Philos. Mag. A, 2002, 82(9), p 1691–1711. doi:10.1080/01418610210130976

    Google Scholar 

Download references

Acknowledgments

This work was funded by the Cross-Cutting Technologies Program at the National Energy Technology Laboratory (NETL) - Strategic Center for Coal, managed by Robert Romanosky (Technology Manager) and Charles Miller (Technology Monitor). The Research was executed through NETL’s Office of Research and Development’s Innovative Process Technologies (IPT) Field Work Proposal with David Alman serving as the Materials Focus Area Lead.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Hawk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozman, K.A., Kruzic, J.J., Sears, J.S. et al. Fatigue Crack Growth Mechanisms for Nickel-based Superalloy Haynes 282 at 550-750 °C. J. of Materi Eng and Perform 24, 3699–3707 (2015). https://doi.org/10.1007/s11665-015-1678-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1678-8

Keywords

Navigation