Skip to main content
Log in

Friction Stir Processing of Al-TiB2 In Situ Composite: Effect on Particle Distribution, Microstructure and Properties

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Aluminum-based in situ composites suffer from the age-old issue of particle segregation along the grain boundaries after casting. In the present study, friction stir processing (FSP) was employed as a secondary process to improve the distribution of in situ formed TiB2 particles in Al-based composite. All the agglomerates of TiB2 were broken, and uniform distribution of particles was achieved after double-pass FSP. Also, FSP removed the casting defects and caused significant grain refinement of the Al matrix. The microstructure was characterized by equiaxed fine grains with average size of 3 µm and narrow grain size distribution. The microstructural refinements and homogenization after FSP not only enhanced the strength but also improved the ductility of the as-cast composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T.W. Clyne and P.J. Withers, An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge, 1993

    Book  Google Scholar 

  2. L. Lu, M.O. Lai, and F.L. Chen, Al-4 wt% Cu Composite Reinforced with In Situ TiB2 Particles, Acta Mater., 1997, 45, p 4297–4309

    Article  Google Scholar 

  3. Z.Y. Chen, Y.Y. Chen, Q. Shu, G.Y. An, D. Li, D.S. Xu, and Y.Y. Liu, Solidification and Interfacial Structure of In Situ Al-4.5Cu/TiB2 Composite, J. Mater. Sci., 2000, 35, p 5605–5608

    Article  Google Scholar 

  4. S.C. Tjong and Z.Y. Ma, Microstructural and Mechanical Characteristics of In Situ Metal Matrix Composites, Mater. Sci. Eng. R, 2009, 29, p 49–113

    Article  Google Scholar 

  5. J. Fjellstedt and A.E.W. Jarfors, On the Precipitation of TiB2 in Aluminium Melts from the Reaction with KBF4 and K2TiF6, Mater. Sci. Eng. A, 2005, 413–414, p 527–532

    Article  Google Scholar 

  6. M. Emamy, M. Mahta, and J. Rasizadeh, Formation of TiB2 Particles During Dissolution of Al3Ti in Al-TiB2 Metal Matrix Composite Using an In Situ Technique, Compos. Sci. Technol., 2006, 66, p 1063–1066

    Article  Google Scholar 

  7. M.A. Herbert, C. Sarkar, R. Mitra, and M. Chakraborty, Microstructural Evaluation, Hardness and Alligatoring in the Mushy State Rolled Cast Al-4.5Cu Alloy and In Situ Al-4.5Cu-5TiB2 Composite, Metall. Mater. Trans. A, 2007, 38, p 2110–2126

    Article  Google Scholar 

  8. K.L. Tee, L. Lu, and M.O. Lai, Synthesis of In Situ Al-TiB2 Composites Using Stir Cast Route, Compos. Struct., 1999, 47, p 589–593

    Article  Google Scholar 

  9. K.R. Ravi, M. Saravanan, R.M. Pillai, A. Mandal, B.S. Murty, M. Chakraborty, and B.C. Pai, Equal Channel Angular Pressing of Al-5wt% TiB2 In Situ Composite, J. Alloys Compd., 2008, 459, p 239–243

    Article  Google Scholar 

  10. S. Kumar, V.S. Sarma, and B.S. Murty, The Influence of Room Temperature and Cryogenic Temperature Rolling on the Aging and Wear Behaviour of Al-4Cu-5TiB2 In Situ Composites, J. Alloys Compd., 2009, 479, p 268–273

    Article  Google Scholar 

  11. R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, and A.K. Mukherjee, High Strain Rate Superplasticity in a Friction Stir Processed 7075 Al Alloy, Scripta Mater., 1999, 42, p 163–168

  12. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R, 2005, 50, p 1–78

    Article  Google Scholar 

  13. Z.Y. Ma, Friction Stir Processing Technology: A Review, Metall. Mater. Trans. A, 2008, 39, p 642–658

    Article  Google Scholar 

  14. R.S. Mishra, Z.Y. Ma, and I. Charit, Friction Stir Processing: A Novel Technique for Fabrication of Surface Composite, Mater. Sci. Eng. A, 2003, 341, p 307–310

    Article  Google Scholar 

  15. W. Wang, Q.Y. Shi, P. Liu, H.K. Li, and T. Li, A Novel Way to Produce SiCp Reinforced Aluminium Metal Matrix Composites by Friction Stir Processing, J. Mater. Process. Technol., 2009, 209, p 2099–2103

    Article  Google Scholar 

  16. A.S. Zarghani, S.F.K. Bozorg, and A.Z. Hanzaki, Microstructure and Mechanical Properties of Al/Al2O3 Surface Nano-composite Layer Produced by Friction Stir Processing, Mater. Sci. Eng. A, 2009, 500, p 84–91

    Article  Google Scholar 

  17. D. Yadav and R. Bauri, Nickel Particle Embedded Aluminium Matrix Composite with High Ductility, Mater. Lett., 2010, 64, p 664–667

    Article  Google Scholar 

  18. R. Bauri, D. Yadav, C.N.S. Kumar, and B. Balaji, Tungsten Particle Reinforced Al 5083 Composite with High Strength and Ductility, Mater. Sci. Eng. A, 2015, 620, p 67–75

    Article  Google Scholar 

  19. C.J. Hsu, C.Y. Chang, P.W. Kao, N.J. Ho, and C.P. Chang, Al-Al3Ti Nanocomposites Produced In Situ by Friction Stir Processing, Acta Mater., 2006, 54, p 5241–5249

    Article  Google Scholar 

  20. R. Bauri, D. Yadav, and G. Suhas, Effect of Friction Stir Processing (FSP) on Microstructure and Properties of Al-TiC In Situ Composite, Mater. Sci. Eng. A, 2011, 528, p 4732–4739

    Article  Google Scholar 

  21. D. Zhao, X. Liu, Y. Liu, and X. Bian, In-Situ Preparation of Al Matrix Composites Reinforced by TiB2 Particles and Sub-micron ZrB2, J. Mater. Sci., 2005, 40, p 4365–4368

    Article  Google Scholar 

  22. Y.M. Youssef, R.J. Dashwood, and P.D. Lee, Effect of Clustering on Particle Pushing and Solidification Behaviour in TiB2 Reinforced Aluminium PMMCs, Composites A, 2005, 36, p 747–763

    Article  Google Scholar 

  23. C. Wang, M. Wang, B. Yu, D. Chen, P. Qin, M. Feng, and Q. Dai, The Grain Refinement Behaviour of TiB2 Particles Prepared with In Situ Technology, Mater. Sci. Eng. A, 2007, 459, p 238–243

    Article  Google Scholar 

  24. P. Schumacher, A.L. Greer, J. Worth, P.V. Evans, M.A. Kearns, P. Fisher, and A.H. Green, New Studies of Nucleation Mechanisms in Aluminium Alloys: Implications for Grain Refinement Practice, Mater. Sci. Technol., 1998, 14, p 394–404

    Article  Google Scholar 

  25. I.G. Watson, M.F. Forster, P.D. Lee, R.J. Dashwood, R.W. Hamilton, and A. Chirazi, Investigation of the Clustering Behaviour of Titanium Diboride Particles in Aluminium, Composites A, 2005, 36, p 1177–1187

    Article  Google Scholar 

  26. C.I. Chang, C.J. Lee, and J.C. Huang, Relationship Between Grain Size and Zener-Holloman Parameter During Friction Stir Processing in AZ31Mg Alloys, Scripta Mater., 2004, 51, p 509–514

    Article  Google Scholar 

  27. M. Easton and D. StJohn, Grain Refinement of Aluminium Alloys: Part II. Confirmation of, and a Mechanism for, the Solute Paradigm, Metall. Mater. Trans. A, 1999, 30, p 1625–1633

    Article  Google Scholar 

  28. U. Chakkkingal, A.B. Suriadi, and P.F. Thomson, The Development of Microstructure and the Influence of Processing Route During Equal Channel Angular Drawing of Pure Aluminium, Mater. Sci. Eng. A, 1999, 266, p 241–249

    Article  Google Scholar 

  29. F.J. Humphreys and H. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, 2004, p 421

    Google Scholar 

  30. D. Yadav and R. Bauri, Microstructure Development in Single and Double Pass Friction Stir Processing of Aluminium, Mater. Sci. Forum, 2013, 753, p 50–53

    Article  Google Scholar 

  31. D. Yadav and R. Bauri, Effect of Friction Stir Processing on Microstructure and Mechanical Properties of Aluminium, Mater. Sci. Eng. A, 2012, 539, p 85–92

    Article  Google Scholar 

  32. K.L. Tee, L. Lu, and M.O. Lai, In Situ Processing of Al-TiB2 Composite by the Stir-Casting Technique, J. Mater. Proc. Technol., 1999, 89–90, p 513–519

    Article  Google Scholar 

  33. J. Singh, S.K. Goel, V.N.S. Mathur, and M.L. Kapoor, Elevated Temperature Tensile Properties of Squeeze Cast Al-Al2O3-MgO Particulate MMC up to 573 K, J. Mater. Sci., 1991, 26, p 2750–2758

    Article  Google Scholar 

  34. A.R.E. Singer and S. Ozbek, Metal Matrix Composites Produced by Spray Codeposition, Powder Met., 1985, 28, p 72–78

    Article  Google Scholar 

  35. J.V. Wood, P. Davies, and J.L.F. Kellie, Properties of Reactively Cast Aluminium TiB2 Alloys, Mater. Sci. Technol., 1993, 9, p 833–840

    Article  Google Scholar 

  36. M. Wang, D. Chen, Z. Chen, Y. Wu, F. Wang, and N. Ma, Mechanical Properties of In Situ TiB2 Composites, Mater. Sci. Eng. A, 2014, 590, p 246–254

    Article  Google Scholar 

  37. S.J. Hong, H.M. Kim, D. Huh, C. Suryanaranarayana, and B.S. Chun, Effect of Clustering on Mechanical Properties of SiC Particulate-Reinforced Aluminium Alloy 2024 Metal Matrix Composites, Mater. Sci. Eng. A, 2003, 347, p 198–204

    Article  Google Scholar 

  38. E. Orowan, Symposium on Internal Stresses in Metals and Alloys, Institute of Metals, London, 1948, p 451

    Google Scholar 

  39. E.O. Hall, The Deformation and Ageing of Mild Steel: III, Discussion of Results, Proc. Phys. Soc. London, 1954, 64, p 747–753

    Article  Google Scholar 

  40. Y. Li and K.T. Ramesh, Influence of Particle Volume Fraction, Shape and Aspect Ratio on the Behavior of Particle-Reinforced Metal-Matrix Composites at High Rates of Strain, Acta Mater., 1998, 46, p 5633–5646

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the faculty at Materials Joining Laboratory, Dept. of Metallurgical and Materials Engineering, IIT Madras, for providing access to NRB supported FSP facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devinder Yadav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, D., Bauri, R. Friction Stir Processing of Al-TiB2 In Situ Composite: Effect on Particle Distribution, Microstructure and Properties. J. of Materi Eng and Perform 24, 1116–1124 (2015). https://doi.org/10.1007/s11665-015-1404-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1404-6

Keywords

Navigation