Skip to main content
Log in

Using a Coupled Thermal/Material Flow Model to Predict Residual Stress in Friction Stir Processed AlMg9Si

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A coupled thermal/material flow model of friction stir processing is developed for friction stir processing of an as-cast AlSi9Mg aluminum alloy. By capturing material flow during processing, an asymmetric temperature distribution is generated with higher processing temperatures on the advancing side than on the retreating side. The temperature distribution from the coupled model is then incorporated into a thermomechanical model to predict the residual stress state after processing. These numerical results are compared with the residual stresses experimentally measured by the trepanation method. Experimental results show that the tensile residual stresses are higher on the advancing side than on the retreating side. The simulation successfully captures the asymmetric behavior of the residual stress profile, and the predicted maximum residual stress values show relatively good agreement with the experimental values. The simulated profile, however, is narrower than the experimental profile, yielding a smaller region of tensile residual stresses around the process zone than experimentally observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Mahoney, C. Fuller, M. Miles, and W. Bingel, Friction Stir Welding and Processing III, TMS, Warrendale, PA, 2005, p 131–138

    Google Scholar 

  2. T.S. Mahmoud and S.S. Mohamed, Improvement of Microstructural, Mechanical and Tribological Characteristics of A413 Cast Al Alloys Using Friction Stir Processing, Metall. Mater. Trans. A., 2012, 558, p 502–509

    Google Scholar 

  3. P.L. Threadgill, A.J. Leonard, H.R. Shercliff, and P.J. Withers, Friction Stir Welding of Aluminium Alloys, Int. Mater. Rev., 2009, 54(2), p 49–93

    Article  Google Scholar 

  4. O. Hatamleh, I.V. Rivero, and J. Lyons, Evaluation of Surface Residual Stresses in Friction Stir Welds Due to Laser and Shot Peening, J. Mater. Eng. Perform., 2007, 16(5), p 549–553

    Article  Google Scholar 

  5. G. Bussu and P.E. Irving, The Role of Residual Stress and Heat Affected Zone Properties on Fatigue Crack Propagation in Friction Stir Welded 2024-T351 Aluminum Joints, Int. J. Fatigue, 2003, 25(1), p 77–88

    Article  Google Scholar 

  6. D.M. Neto and P. Neto, Numerical Modeling of Friction Stir Welding Process: A Literature Review, Int. J. Adv. Manuf. Technol., 2013, 65(1–4), p 115–126

    Article  Google Scholar 

  7. D.G. Richards, P.B. Prangnell, S.W. Williams, and P.J. Withers, Global Mechanical Tensioning for the Management of Residual Stresses in Welds, Metall. Mater. Trans. A., 2008, 489(1–2), p 351–362

    Google Scholar 

  8. D. Jacquin, B. de Meester, A. Simar, D. Deloison, F. Montheillet, and C. Desrayaud, A Simple Eulerian Thermomechanical Modeling of Friction Stir Welding, J. Mater. Process. Technol., 2011, 211(1), p 57–65

    Article  Google Scholar 

  9. P. Heurtier, M.J. Jones, C. Desrayaud, J.H. Driver, F. Montheillet, and D. Allehaux, Mechanical and Thermal Modeling of Friction Stir Welding, J. Mater. Process. Tech., 2006, 171(3), p 348–357

    Article  Google Scholar 

  10. Y. Javadi, S. Sadeghi, and M.A. Najafabadi, Taguchi Optimization and Ultrasonic Measurement of Residual Stresses in the Friction Stir Welding, Mater. Des., 2014, 55(3), p 27–34

    Article  Google Scholar 

  11. M. St. Węglowski, and S. Dymek, Microstructural Modification of Cast Aluminium Alloy AlMg9Si via Friction Modified Processing, Arch. Metall. Mater., 2012, 57(1), p 71-78

  12. M. St. Węglowski, A. Pietras, S. Dymek, and C. Hamilton, Characterization of Friction Modified Processing: A Novel Tool for Enhancing Surface Properties in Cast Aluminium Alloys. Key Eng. Mater., 2012, 504, p 1231-1236

  13. C. Hamilton, M. Kopyściański, O. Senkov, and S. Dymek, A Coupled Thermal/Material Flow Model of Friction Stir Welding Applied to Sc-Modified Aluminum Alloys, Metall. Mater. Trans. A., 2013, 44(4), p 1730–1740

    Article  Google Scholar 

  14. O.C. Zienkiewicz and I.C. Cormeau, Visco-Plasticity-Plasticity and Creep in Elastic Solids: A Unified Numerical Solution Approach, Int. J. Numer. Methods. Eng., 1974, 8(4), p 821–845

    Article  Google Scholar 

  15. T. Sheppard and D. Wright, Determination of Flow-Stress. 1. Constitutive Equation for Aluminum-Alloys at Elevated Temperatures, Met. Technol., 1979, 6(1), p 215-223.

  16. K.E. Tello, A.P. Gerlich, and P.F. Mendez, Constants for Hot Deformation Constitutive Models for Recent Experimental Data, Sci. Tech. Weld. Join., 2010, 15(3), p 260–266

    Article  Google Scholar 

  17. S.I. Bakhtiyarov, R.A. Overfelt, and S.G. Teodorescu, Electrical and Thermal Conductivity of A319 and A356 Aluminum Alloys, J. Mater. Sci., 2001, 36(19), p 4643–4648

    Article  Google Scholar 

  18. S.W. Kim, K. Park, S.H. Lee, K.H. Kang, and K.T. Lim, Thermophysical Properties of Automotive Metallic Disk Materials, Int. J. Thermophys., 2008, 29(6), p 2179–2188

    Article  Google Scholar 

  19. C. Hamilton, A. Sommers, and S. Dymek, A Thermal Model of Friction Stir Welding Applied to Sc-Modified Al-Zn-Mg-Cu Alloy Extrusions, Int. J. Mach. Tool. Manuf., 2009, 49(3-4), p 230-238

  20. C. Hamilton, S. Dymek, and A. Sommers, A Thermal Model of Friction Stir Welding in Aluminum Alloys, Int. J. Mach. Tool. Manuf., 2008, 48(10), p 1120–1130

    Article  Google Scholar 

  21. C.C. Tutum and J.H. Hatel, Optimisation of Process Parameters in Friction Stir Welding Based on Residual Stress Analysis: A Feasibility Study, Sci. Tech. Weld. Join., 2010, 15(5), p 369–377

    Article  Google Scholar 

  22. M.R. Sonne, C.C. Tutum, J.H. Hatel, A. Simar, and B. de Meester, The Effect of Hardening Laws and Thermal Softening on Modeling Residual Stresses in FSW of Aluminum Alloy 2024-T3, J. Mater. Process. Technol., 2013, 213(3), p 477–486

    Article  Google Scholar 

  23. M.L. Santella, T. Engstrom, D. Storjohann, and T.Y. Pan, Effects of Friction Stir Processing on Mechanical Properties of the Cast Aluminum Alloys A319 and A356, Scripta Mater., 2005, 53(2), p 201–206

    Article  Google Scholar 

  24. I. Kalemba, C. Hamilton, and S. Dymek, Natural Aging in Friction Stir Welded 7136-T76 Aluminum Alloy, Mater Des, 2014, 60(8), p 295–301

    Article  Google Scholar 

  25. K. Deplus, A. Simar, W.V. Haver, and B. de Meester, Residual Stresses in Aluminium Alloy Friction Stir Welds, Int. J. Adv. Manuf. Tech., 2011, 56, p 493–504

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the AGH University of Science and Technology (Grant No. 11.11.110.295) for their support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Hamilton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamilton, C., Węglowski, M.S., Dymek, S. et al. Using a Coupled Thermal/Material Flow Model to Predict Residual Stress in Friction Stir Processed AlMg9Si. J. of Materi Eng and Perform 24, 1305–1312 (2015). https://doi.org/10.1007/s11665-015-1402-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1402-8

Keywords

Navigation