Skip to main content
Log in

Forced Flow and Solidification Process of Sn-3.5%Pb Melt in Hollow Billet Under Rotating Magnetic Field

Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

An experimental study with respect to the influence of rotating magnetic field (RMF) on the forced flow, solidification process, and microstructure of Sn-3.5%Pb melt in hollow billet is investigated. The result shows that when the voltage intensity is 100 V, the maximum rotary angular velocity can reach to 30.672 rad/s. While the solidification time is 360 s, the maximum rotary angular velocity is only 2.4 rad/s. The RMF decreases the sump depth and gets the sump shape shallower and flatter. The microstructures are greatly refined with the enhancement of voltage intensities. When the voltage intensity is 100 V, the grain size is refined from 186 to 65 μm. Consequences on the occurrence by RMF are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. P.A. Nikrityuk, K. Eckert, and R. Grundmann, A Numerical Study of Unidirectional Solidification of a Binary Metal Alloy Under Influence of a Rotating Magnetic Field, Int. J. Heat Mass Transf., 2006, 49, p 1501–1515

    Article  Google Scholar 

  2. G. Zimmermann, A. Weiss, and Z. Mbaya, Effect of Forced Melt Flow on Microstructure Evolution in AlSi7Mg0.6 Alloy During Directional Solidification, Mater. Sci. Eng. A, 2005, 413–414, p 236–242

    Article  Google Scholar 

  3. Z.M. Yan, W.Z. Jin, and T.J. Li, Effect of Rotating Magnetic Field (RMF) on Segregation of Solute Elements in CuNi10Fe1Mn Alloy Hollow Billet, J. Mater. Eng. Perform., 2012, 21, p 1970–1977

    Article  Google Scholar 

  4. J.C. Jie, Q.C. Zou, J.L. Sun, Y.P. Lu, T.M. Wang, and T.J. Li, Separation Mechanism of the Primary Si Phase from the Hypereutectic Al-Si Alloy Using a Rotating Magnetic Field During Solidification, Acta Mater., 2014, 72, p 57–66

    Article  Google Scholar 

  5. Z.M. Yan, X.T. Li, Z.Q. Cao, X.L. Zhang, and T.J. Li, Grain Refinement of Horizontal Continuous Casting of the CuNi10Fe1Mn Alloy Hollow Billets by Rotating Magnetic Field (RMF), Mater. Lett., 2008, 62, p 4389–4392

    Article  Google Scholar 

  6. B. Willers, S. Eckert, U. Michel, I. Haase, and G. Zouhar, The Columnar-to-Equiaxed Transition in Pb-Sn Alloys Affected by Electromagnetically Driven Convection, Mater. Sci. Eng. A, 2005, 402, p 55–65

    Article  Google Scholar 

  7. S. Eckert, B. Willers, P.A. Nikrityuk, K. Eckert, U. Michel, and G. Zouhar, Application of a Rotating Magnetic Field During Directional Solidification of Pb-Sn Alloys: Consequences on the CET, Mater. Sci. Eng. A, 2005, 413–414, p 211–216

    Article  Google Scholar 

  8. X.L. Zhang, T.J. Li, H.T. Teng, S.S. Xie, and J.Z. Jin, Semisolid Processing AZ91 Magnesium Alloy by Electromagnetic Stirring After Near-Liquidus Isothermal Heat Treatment, Mater. Sci. Eng. A, 2008, 475, p 194–201

    Article  Google Scholar 

  9. W.Z. Jin, F.D. Bai, T.J. Li, and G.M. Yin, Grain Refinement of Superalloy IN100 Under the Action of Rotary Magnetic Fields and Inoculants, Mater. Lett., 2008, 62, p 1585–1588

    Article  Google Scholar 

  10. F.D. Bai, M.H. Sha, T.J. Li, and L.H. Lu, Influence of Rotating Magnetic Field on the Microstructure and Phase Content of Ni-Al alloy, J. Alloys Compd., 2011, 509, p 4835–4838

    Article  Google Scholar 

  11. J. Stiller, K. Koal, W.E. Nagel, J. Pal, and A. Cramer, Liquid Metal Flows Driven by Rotating and Traveling Magnetic Fields, Eur. Phys. J. Special Topics, 2013, 220, p 111–122

    Article  Google Scholar 

  12. Q. Zhang, T.M. Wang, T.J. Li, and J.Z. Jin, Numerical Simulation of Solidification Process of Sn-3.5%Pb Hollow Billet with Stirring Magnetic Field, Trans. Nonferr. Met. Soc. China, 2007, 17, p 940–946

    Article  Google Scholar 

  13. C. Vivès, Crystallization of Semi-Solid Magnesium Alloys and Composites in the Presence of Magnetohydrodynamic Shear Flows, J. Cryst. Growth, 1994, 137, p 653–662

    Article  Google Scholar 

  14. C. Vivès, Elaboration of Metal Matrix Composites from Thixo-Tropic Alloy Slurries Using a New Magnetohydrodynamic Caster, Metall. Trans. B, 1993, 24, p 493–510

    Article  Google Scholar 

  15. J.Z. Jin, K.F. Kobayashi, and P.H. Shingu, The Effect of Fluid Flow on the Eutectic Lamellar Spacing, Metall. Mater. Trans. A, 1984, 15, p 307–312

    Google Scholar 

  16. P. Dold and K.W. Benz, Rotating Magnetic Fields: Fluid Flow and Crystal Growth Applications, Prog. Cryst. Growth Charact. Mater., 1999, 38, p 7–38

    Article  Google Scholar 

  17. P.A. Davidson, An Introduction to Magnetohydrodynamics, Cambridge University Press, Cambridge, 2001

    Book  Google Scholar 

  18. Z.M. Yan, H. Liu, T.J. Li, X.Q. Zhang, Z.Q. Cao, and X.L. Zhang, Effects of Alternating Magnetic Field and Casting Parameters on Solidification Structure and Mechanical Properties of Copper Hollow Billets, Mater. Des., 2009, 30, p 1245–1250

    Article  Google Scholar 

  19. T. Li, X. Lin, and W.D. Huang, Morphological Evolution During Solidification Under Stirring, Acta Mater., 2006, 54, p 4815–4824

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51204028), the Specialized Research Found for the Doctoral Program of Higher Education (No. 20112124120003) and the 51st General Financial Grant from the China Postdoctoral Science Foundation (No. 2012M510791).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meiling Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Chen, M., Teng, Y. et al. Forced Flow and Solidification Process of Sn-3.5%Pb Melt in Hollow Billet Under Rotating Magnetic Field. J. of Materi Eng and Perform 24, 1059–1064 (2015). https://doi.org/10.1007/s11665-014-1303-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1303-2

Keywords

Navigation