Skip to main content
Log in

Effect of Temperature and Chloride Ion Concentration on Corrosion of Passive Films on Nano/Ultrafine Grained Stainless Steels

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effects of solution temperature, concentration of chloride ions, and grain refinement on the corrosion resistance of the passive film formed on 304 stainless steels in borate buffer solution were investigated by electrochemical impedance spectroscopy and Mott-Schottky measurements. The results showed that the passive films formed on the surface of 304 stainless steels possessed n- and p-type semiconductor characteristics. With the increase of solution temperature, the corrosion resistance of the passive film of coarse and nano/ultrafine grained stainless steels decreased. However, the corrosion resistance of the passive film in nano/ultrafine grained stainless steel was higher than that in the coarse grained one. Moreover, in cyclic potentiodynamic polarization tests, chloride ions changed semiconductor characteristics of the passive film formed on the surface of stainless steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V. Muthukumaran, V. Selladurai, S. Nandhakumar, and M. Senthilkumar, Experimental Investigation on Corrosion and Hardness of Ion Implanted AISI, 316L Stainless Steel, Mater. Des., 2010, 31(6), p 2813–2817

    Article  Google Scholar 

  2. P.E. Klages, Z. Bai, M. Lobban, M.K. Rotermund, and H.H. Rotermund, Enhancing Resistance to Pitting Corrosion in Mechanically Polished Stainless Steel 316 LVM by Water Treatment, Electrochem. Commun., 2012, 15(1), p 54–58

    Article  Google Scholar 

  3. W. Ye, Y. Li, and F.H. Wang, The Improvement of the Corrosion Resistance of 309 Stainless Steel in the Transpassive Region by Nano-crystallization, Electrochim. Acta, 2009, 54(4), p 1339–1349

    Article  Google Scholar 

  4. F.L. Nie, S.G. Wang, Y.B. Wang, S.C. Wei, and Y.F. Zheng, Comparative Study on Corrosion Resistance and In Vitro Biocompatibility of Bulk Nanocrystalline and Microcrystalline Biomedical 304 Stainless Steel, Dent. Mater., 2011, 27(7), p 677–683

    Article  Google Scholar 

  5. W. Zeiger, M. Schneider, D. Scharnweber, and H. Worch, Corrosion Behaviour of a Nanocrystalline FeA18 Alloy, Nanostruct. Mater., 1995, 6(5), p 1013–1016

    Article  Google Scholar 

  6. P.F. Chui, K.N. Sun, C. Sun, X.Q. Yang, and T. Shan, Effect of Surface Nanocrystallization Induced by Fast Multiple Rotation Rolling on Hardness and Corrosion Behavior of 316L Stainless Steel, Appl. Surf. Sci., 2011, 257(15), p 6787–6791

    Article  Google Scholar 

  7. Z.J. Zheng, Y. Gao, Y. Gui, and M. Zhu, Corrosion Behaviour of Nanocrystalline 304 Stainless Steel Prepared by Equal Channel Angular Pressing, Corros. Sci., 2012, 54, p 60–67

    Article  Google Scholar 

  8. C. Pan, L. Liu, Y. Li, S.G. Wang, and F.H. Wang, Passive Film Growth Mechanism of Nanocrystalline 304 Stainless Steel Prepared by Magnetron Sputtering and Deep Rolling Techniques, Electrochim. Acta, 2011, 56(22), p 7740–7748

    Article  Google Scholar 

  9. B.O. Elfstrom, The Effect of Chloride Ions on Passive Layers on Stainless Steels, Mater. Sci. Eng., 1980, 1980(42), p 173–180

    Article  Google Scholar 

  10. A. Kocijan, Č. Donik, and M. Jenko, Electrochemical and XPS Studies of the Passive Film Formed on Stainless Steels in Borate Buffer and Chloride Solutions, Corros. Sci., 2007, 49(5), p 2083–2098

    Article  Google Scholar 

  11. Y.C. Zhang, D.D. Macdonald, M. Urquidi-Macdonald, G.R. Engelhardt, and R. Barry, Dooley, Passivity Breakdown on AISI, Type 403 Stainless Steel in Chloride-Containing Borate Buffer Solution, Corros. Sci., 2006, 48(11), p 3812–3823

    Article  Google Scholar 

  12. D.G. Li, Y.R. Feng, Z.Q. Bai, J.W. Zhu, and M.S. Zheng, Influence of Temperature, Chloride Ions and Chromium Element on the Electronic Property of Passive Film Formed on Carbon Steel in Bicarbonate/Carbonate Buffer Solution, Electrochim. Acta, 2007, 52(28), p 7877–7884

    Article  Google Scholar 

  13. N. De Cristofaro, M. Piantini, and N. Zacchetti, The Influence of Temperature on the Passivation Behaviour of a Super Duplex Stainless Steel in a Boric-Borate Buffer Solution, Corros. Sci., 1997, 39(12), p 2181–2191

    Article  Google Scholar 

  14. J. Sikora, E. Sikora, and D.D. Macdonald, The Electronic Structure of the Passive Film on Tungsten, Electrochim. Acta, 2000, 45(12), p 1875–1883

    Article  Google Scholar 

  15. Z.X. Zhang, G. Lin, and Z. Xu, Effects of Light Pre-deformation on Pitting Corrosion Resistance of Copper-Bearing Ferrite Antibacterial Stainless Steel, J. Mater. Process. Technol., 2008, 205(1), p 419–424

    Article  Google Scholar 

  16. D.J. Blackwood, Influence of the Space-Charge Region on Electrochemical Impedance Measurements on Passive Oxide Films on Titanium, Electrochim. Acta, 2000, 46(4), p 563–569

    Article  Google Scholar 

  17. W.P. Gomes and D. Vanmackelbergh, Impedance Spectroscopy at Semiconductor Electrodes: Review and Recent Developments, Electrochim. Acta, 1996, 41(7–8), p 967–973

    Article  Google Scholar 

  18. L.V. Taveira, M.F. Montemor, M. DaCunhaBelo, M.G. Ferreira, and L.F.P. Dick, Influence of Incorporated Mo and Nb on the Mott-Schottky Behaviour of Anodic Films Formed on AISI, 304L, Corros. Sci., 2010, 52(9), p 2813–2818

    Article  Google Scholar 

  19. J.L. Lv and H.Y. Luo, Electrochemical Investigation of Passive Film in Pre-deformation AISI, 304 Stainless Steels, Appl. Surf. Sci., 2012, 2012(263), p 29–37

    Google Scholar 

  20. Agatino Di Paola, Semiconducting Properties of Passive Films on Stainless Steels, Electrochim. Acta, 1989, 34(2), p 203–210

    Article  Google Scholar 

  21. C. Sunseri, S. Piazza, and F. Di Quarto, Photocurrent Spectroscopic Investigations of Passive Films on Chromium, J. Electrochem. Soc., 1990, 137(8), p 2411–2417

    Article  Google Scholar 

  22. N.E. Hakiki, S. Boudin, B. Rondot, and M. Da Cunha Belo, The Eletrornic-Structure of Passive Films Formed on Stainless-Steels, Corros. Sci., 1995, 37(21), p 1809–1822

    Article  Google Scholar 

  23. J. Shoonman, K. Vos, and G. Blasse, Donor Densities in TiO2 Photo-Electrodes, J. Electrochem. Soc., 1981, 128(5), p 1154–1162

    Article  Google Scholar 

  24. A.M.P. Simões, M.G.S. Ferreira, B. Rondot, and M. da Cunha Belo, Study of Passive Films Formed on AISI304 Stainless Steel by Impedance Measure-Ments and Photoelectrochemistry, J. Electrochem. Soc., 1990, 137(1), p 82–87

    Article  Google Scholar 

  25. C.Y. Chao, L.F. Lin, and D.D. Macdonald, A Point Defect Model for Anodic Passive Films I. Film Growth Kinetics, J. Electrochem. Soc., 1981, 128(6), p 1187–1193

    Article  Google Scholar 

  26. S.M. Moon and S. II, Pyun, The Mechanism of Stress Generation During the Growth of Anodic Oxide Films on Pure Aluminium in Acidic Solutions, Electrochim. Acta, 1998, 43(21–22), p 3117–3126

    Article  Google Scholar 

  27. J.S. Noh, N.J. Laycock, W. Gao, and D.B. Wells, Effects of Nitric Acid Passivation on the Pitting Resistance of 316 Stainless Steel, Corros. Sci., 2000, 42(12), p 2069–2084

    Article  Google Scholar 

  28. C.C. Shih, C.M. Shih, Y.Y. Su, L.H.J. Su, M.S. Chang, and S.J. Lin, Effect of Surface Oxide Properties on Corrosion Resistance of 316L Stainless Steel for Biomedical Applications, Corros. Sci., 2004, 2004(46), p 427–441

    Article  Google Scholar 

  29. G. Lothongkum, S. Chaikittislip, and A.W. Lothongkum, XPS Investigation of Surface Films on High Cr-Ni Ferritic and Austenitic Stainless Steels, App. Surf. Sci., 2003, 218(1–4), p 203–210

    Article  Google Scholar 

  30. P. Schmuki, H. Boehni, and F. Mansfeld, A Photoelectrochemical Investigation of Passive Films Formed by Alternating Voltage Passivation, J. Electrochem. Soc., 1993, 140(7), p L119–L121

    Article  Google Scholar 

  31. A. Shahryari and S. Omanovic, Improvement of Pitting Corrosion Resistance of a Biomedical Grade 316LVM Stainless Steel by Electrochemical Modification of the Passive Film Semiconducting Properties, Electrochem. Commun., 2007, 9(1), p 76–82

    Article  Google Scholar 

  32. S.T. Amaral, E.M.A. Martini, and I.L. Müller, An Attempt of Experimental Separation of the Potentiodynamic Anodic Peaks of Iron in Alkaline Solutions and Application of the Ohmic Model for Passive Film Growth, Corros. Sci., 2001, 43(5), p 853–879

    Article  Google Scholar 

  33. M.G.S. Ferreira, N.E. Hakiki, G. Goodlet, S. Faty, A.M.P. Simões, and M. Da Cunha Belo, Influence of the Temperature of Film Formation on the Electronic Structure of Oxide Films Formed on 304 Stainless Steel, Electrochim. Acta, 2001, 46(24-25), p 3767–3776

    Article  Google Scholar 

  34. Z.B. Wang, N.R. Tao, W.P. Tong, J. Lu, and K. Lu, Diffusion of Chromium in Nanocrystalline Iron Produced by Means of Surface Mechanical Attrition Treatment, Acta Mater., 2003, 51(14), p 4319–4329

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luo Hongyun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jinlong, L., Hongyun, L. Effect of Temperature and Chloride Ion Concentration on Corrosion of Passive Films on Nano/Ultrafine Grained Stainless Steels. J. of Materi Eng and Perform 23, 4223–4229 (2014). https://doi.org/10.1007/s11665-014-1227-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1227-x

Keywords

Navigation