Skip to main content
Log in

Simulation of Deformation Texture Evolution During Multi Axial Forging of Interstitial Free Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Bulk texture measurement of multi-axial forged body center cubic interstitial free steel performed in this study using x-ray and neutron diffraction indicated the presence of a strong {101}〈111〉 single texture component. Viscoplastic self-consistent simulations could successfully predict the formation of this texture component by incorporating the complicated strain path followed during this process and assuming the activity of {101}〈111〉 slip system. In addition, a first-order estimate of mechanical properties in terms of highly anisotropic yield locus and Lankford parameter was also obtained from the simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater. Sci., 2000, 45, p 103–189

    Article  CAS  Google Scholar 

  2. M.A. Meyers, A. Mishra, and D.J. Benson, Mechanical Properties of Nanocrystalline Materials, Prog. Mater. Sci., 2006, 51, p 427–556

    Article  CAS  Google Scholar 

  3. F.J. Humphreys, P.B. Prangnell, and R. Priestner, Fine-Grained Alloys by Thermomechanical Processing, Curr. Opin. Solid State Mater. Sci., 2001, 5, p 15–21

    Article  CAS  Google Scholar 

  4. A. Bhaumik, S. Biswas, S. Suwas, R.K. Ray, and D. Bhattacharjee, Evolution of Grain Boundary Microstructure and Texture in Interstitial-Free Steel Processed by Equal Channel Angular Extrusion, Metall. Mater. Trans. A, 2009, 40A, p 2729–2742

    Article  Google Scholar 

  5. A. Sarkar, A. Bhowmik, and S. Suwas, Microstructural Characterization of Ultrafine-Grain Interstitial-Free Steel by X-ray Diffraction Line Profile Analysis, Appl. Phys. A, 2009, 94, p 943–948

    Article  CAS  Google Scholar 

  6. S. Suwas, S. Biswas, and A. Bhowmick, Ultra-Fine Grain Materials by Severe Plastic Deformation: Application to Steels, Texture and Microstructure of Steels and Some Other Materials, A. Haldar, S. Suwas, & D. Bhattacharjee, Eds., Springer-Verlag, London, 2009, p 325–344

  7. G.A. Salishchev, O.R. Valiakhmetov, V.A. Valitov, and S.K. Mukhtarov, Submicrocrystalline and Nanocrystalline Structure Formation in Materials and Search for Outstanding Superplastic Properties, Proceedings of the Conference on Superplasticity in Advanced Materials ICSAM-94, Vol 170–172, Materials Science Forum, 1994, p 121–130

  8. S.V. Zherebtsov, G.A. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, S.Y. Mironov, and S.L. Semiatin, Production of Submicrocrystalline Structure in Large-Scale Ti-6Al-4V Billet by Warm Severe Deformation Processing, Scr. Mater., 2004, 51, p 1147–1151

    Article  CAS  Google Scholar 

  9. B.J. Han and Z. Xu, Grain Refinement Under Multi-Axial Forging in Fe-32%Ni Alloy, J. Alloys Compd., 2008, 457, p 279–285

    Article  CAS  Google Scholar 

  10. A. Bhowmik, S. Biswas, D. Satyaveer Singh, A. Sarkar, R.K. Ray, D. Bhattacharjee, and S. Suwas, Microstructure and Texture Evolution in IF Steel Processed by Multi-Axial Forging, Mater. Forum, 2011, 702–703, p 774–777

    Article  Google Scholar 

  11. R.Z. Valiev, Structure and Mechanical Properties of Ultrafine Grained Metals, Mater. Sci. Eng. A, 1997, 234, p 59–66

    Article  Google Scholar 

  12. N. Kamikawa, N. Tsuji, and Y. Minamino, Microstructure and Texture Through Thickness of Ultralow Carbon IF Steel Sheet Severely Deformed by Accumulative Roll-Bonding, Sci. Technol. Adv. Mater., 2004, 5, p 163–172

    Article  CAS  Google Scholar 

  13. I.J. Beyerlein, L.S. Tóth, C.N. Tomé, and S. Suwas, Role of Twinning on Texture Evolution of Silver During Equal Channel Angular Extrusion, Philos. Mag., 2007, 87, p 885–906

    Article  CAS  Google Scholar 

  14. B. Beausir, S. Suwas, L.S. Tóth, K.W. Neale, and J.J. Fundenberger, Analysis of Texture Evolution in Magnesium During Equal Channel Angular Extrusion, Acta Mater., 2008, 56, p 200–214

    Article  CAS  Google Scholar 

  15. S. Suwas, B. Beausir, L.S. Tóth, J.J. Fundenberger, and G. Gottstein, Texture Evolution in Commercially Pure Titanium After Warm Equal Channel Angular Extrusion, Acta Mater., 2011, 59, p 1121–1133

    Article  CAS  Google Scholar 

  16. J. Beyerlein and L.S. Tóth, Texture Evolution in Equal-Channel Angular Extrusion, Prog. Mater. Sci., 2009, 54, p 427–510

    Article  CAS  Google Scholar 

  17. M. Hua, C.I. Garcia, and A.J. DeArdo, Multi-phase Precipitates in Interstitial-Free Steels, Scr. Mater., 1993, 28, p 973–978

    Article  CAS  Google Scholar 

  18. P. Ghosh, C. Ghosh, R.K. Ray, and D. Bhattacharjee, Precipitation Behavior and Texture Formation at Different Stages of Processing in an Interstitial Free High Strength Steel, Scr. Mater., 2008, 59, p 276–278

    Article  CAS  Google Scholar 

  19. A. Bhaumik, “Severe Plastic Deformation of IF Steels,” Masters Thesis, IISc, Bangalore, 2008

  20. K. Pawlik, Determination of the Orientation Distribution Function from Pole Figures in Arbitrarily Defined Cells, Phys. Stat. Sol. B, 1986, 134, p 477–483

    Article  Google Scholar 

  21. H.-G. Brokmeier, U. Zink, R. Schnieber, and B. Witassek, TEX-2 Texture Analysis at GKSS Research Center (Instrumentation and Application), Mater. Sci. Forum, 1998, 273–275, p 277–282

    Article  Google Scholar 

  22. R.A. Lebensohn and C.N. Tome, A Self-Consistent Anisotropic Approach for the Simulation of Plastic Deformation and Texture Development of Polycrystals: Application to Zirconium Alloys, Acta Metall. Mater., 1993, 41, p 2611–2624

    Article  CAS  Google Scholar 

  23. C.N. Tome, G.R. Canova, U.F. Kocks, N. Christodoulou, and J.J. Jonas, The Relation Between Macroscopic and Microscopic Strain Hardening in fcc Polycrystals, Acta Metall., 1984, 32, p 1637–1653

    Article  CAS  Google Scholar 

  24. W.F. Hosford, Microstructural Changes During Deformation of [011] Fiber-Textured Metals, Trans. Met. Soc. AIME, 1964, 230, p 12–15

    CAS  Google Scholar 

  25. R.K. Ray, J.J. Jonas, and R.E. Hook, Cold Rolling and Annealing Textures in Low Carbon and Extra Low Carbon Steels, Int. Mater. Rev, 1994, 39, p 129–172

    Article  CAS  Google Scholar 

  26. U.F. Kocks, C.N. Tome, and H.-R. Wenk, Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties, Cambridge University Press, Cambridge, 1998

    Google Scholar 

  27. E.N.da C. Andrade and Y.S. Chow, The Glide Elements of Body-Centred Cubic Crystals, with Special Reference to the Effect of Temperature, Proc. Roy. Soc. A, 1940, 175, p 290–315

    Article  CAS  Google Scholar 

  28. T. Taokas, S. Takeuchi, and E. Furubayashi, Slip Systems and Their Critical Shear Stress in 3% Silicon Iron, J. Phys. Soc. Jpn., 1964, 19, p 701–711

    Article  Google Scholar 

  29. B. Beausir, C. Fresengeas, N.P. Gurao, L.S. Toth, and S. Suwas, Spatial Correlation in Grain Misorientation Distribution, Acta Mater., 2009, 57, p 5382–5395

    Article  CAS  Google Scholar 

  30. M. Pekguleryuz, M. Celikin, M. Hoseini, A. Becerra, and L. Mackenzie, Study on Edge Cracking and Texture Evolution During 150 °C Rolling of Magnesium Alloys: The Effects of Axial Ratio and Grain Size, J. Alloys Compd., 2012, 510, p 308–314

    Article  Google Scholar 

  31. I. Groma, X-ray Line Broadening due to an Inhomogeneous Dislocation Distribution, Phys. Rev. B, 1998, 57, p 7535–7542

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was carried out as an extension to a research program funded by Tata Steel, Jamshedpur, India. The constant encouragement received from Prof. R. K. Ray and Dr. D. Bhattacharjee (both of Tata Steel R & D) is gratefully acknowledged. The facilities set up at the Indian Institute of Science, Bangalore, namely, the Institute x-ray facility and the Institute Nano-science Initiative were utilized for the purpose of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyam Suwas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurao, N.P., Kumar, P., Sarkar, A. et al. Simulation of Deformation Texture Evolution During Multi Axial Forging of Interstitial Free Steel. J. of Materi Eng and Perform 22, 1004–1009 (2013). https://doi.org/10.1007/s11665-012-0388-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-012-0388-8

Keywords

Navigation