Skip to main content
Log in

Investigations on Indium and Zinc Leachabilities from Indium-Bearing Zinc Ferrite Improved by Planetary Ball Milling

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, a high-energy planetary mill was used to modify the chemical stability of indium-bearing zinc ferrite (indium-bearing ZnFe2O4, IBZF) and improve indium and zinc leachabilities. The microstructures, morphologies, and leaching characteristics of IBZF samples milled under different milling conditions were investigated by particle size analysis, Brunauer-Emmett-Teller specific surface area analysis, x-ray diffraction, scanning electron microscopy, Fourier transform infrared spectra, Mössbauer spectrometry, and leaching experiments. The results show that the planetary ball milling has obvious effects on the microstructure and leaching characteristic of IBZF. Increasing the rotation speed and milling time cause the increase in the specific surface area, structure defects, and the breakage of the crystalline network, which result in a significant increase of indium and zinc extractions. In particular, the changes of crystal lattice structure induced by planetary ball milling play a key role in improving indium and zinc leachabilities from IBZF. The planetary ball milling also results in the redistribution of Zn2+ and Fe3+ in IBZF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.H. Yao, X.H. Li, and Y.W. Li, Study on Indium Leaching from Mechanically Activated Hard Zinc Residue, J. Min. Metall. Sect. B, 2011, 47B, p 63–67

    Article  Google Scholar 

  2. J. Kano, E. Kobayashi, W. Tongamp, S. Miyagi, and F. Saito, Non-Thermal Reduction of Indium Oxide and Indium Tin Oxide by Mechanochemical Method, J. Alloys Compd., 2009, 484, p 422–425

    Article  CAS  Google Scholar 

  3. Š. Langová, J. Leško, and D. Matýsek, Selective Leaching of Zinc from Zinc Ferrite with Hydrochloric Acid, Hydrometallurgy, 2009, 95, p 179–182

    Article  Google Scholar 

  4. Y. Zhang, X. Li, L. Pan, X. Liang, and X. Li, Studies on the Kinetics of Zinc and Indium Extraction from Indium-Bearing Zinc Ferrite, Hydrometallurgy, 2010, 100, p 172–176

    Article  CAS  Google Scholar 

  5. N. Leclerc, E. Meux, and J. Lecuire, Hydrometallurgical Extraction of Zinc from Zinc Ferrites, Hydrometallurgy, 2003, 70, p 175–183

    Article  CAS  Google Scholar 

  6. A. Tang, L. Su, C. Li, and W. Wei, Effect of Mechanical Activation on Acid-leaching of Kaolin Residue, Appl. Clay Sci., 2010, 48, p 296–299

    Article  CAS  Google Scholar 

  7. T.C. Yuan, Q.Y. Cao, and J. Li, Effects of Mechanical Activation on Physicochemical Properties and Alkaline Leaching of Hemimorphite, Hydrometallurgy, 2010, 104, p 136–141

    Article  CAS  Google Scholar 

  8. Z. Zhao, Y. Zhang, X. Chen, and A. Chen, Effect of Mechanical Activation on the Leaching Kinetics of Pyrrhotite, Hydrometallurgy, 2009, 99, p 105–108

    Article  CAS  Google Scholar 

  9. Y. Zhang, X. Li, L. Pan, Y. Wei, and X. Liang, Effect of Mechanical Activation on the Kinetics of Extracting Indium from Indium-Bearing Zinc Ferrite, Hydrometallurgy, 2010, 102, p 95–100

    Article  CAS  Google Scholar 

  10. J.H. Yao, X.H. Li, L.P. Pan, and J.M. Mo, Enhancing Physicochemical Properties and Indium Leachability of Indium-Bearing Zinc Ferrite Mechanically Activated Using Tumbling Mill, Metall. Mater. Trans. B, 2012, 43, p 449–459

    Article  CAS  Google Scholar 

  11. H. Yuan, Y. An, G. Xu, and C. Chen, Hydriding Behavior of Magnesium-based Hydrogen Storage Alloy Modified by Mechanical Ball-Milling, Mater. Chem. Phys., 2004, 83, p 340–344

    Article  CAS  Google Scholar 

  12. A.A. Cristóbal, E.F. Aglietti, M.S. Conconi, and J.M. Porto López, Structural Alterations During Mechanochemical Activation of a Titanium-Magnetite Mixture, Mater. Chem. Phys., 2008, 111, p 341–345

    Article  Google Scholar 

  13. S. Rosenkranz, S. Breitung−Faes, and A. Kwade, Experimental Investigations and Modelling of the Ball Motion in Planetary Ball Mills, Powder Technol., 2011, 212, p 224–230

    Article  CAS  Google Scholar 

  14. M. Uzunova-Bujnova, D. Dimitrov, D. Radev, A. Bojinova, and D. Todorovsky, Effect of the Mechanoactivation on the Structure, Sorption and Photocatalytic Properties of Titanium Dioxide, Mater. Chem. Phys., 2008, 110, p 291–298

    Article  CAS  Google Scholar 

  15. S.D. Shenoy, P.A. Joy, and M.R. Anantharaman, Effect of Mechanical Milling on the Structural, Magnetic and Dielectric Properties of Coprecipitated Ultrafine Zinc Ferrite, J. Magn. Magn. Mater., 2004, 269, p 217–226

    Article  CAS  Google Scholar 

  16. B.P. Rao and K.H. Rao, Distribution of In3+ Ions in Indium-Substituted Ni-Zn-Tiferrites, J. Magn. Magn. Mater., 2005, 292, p 44–48

    Article  CAS  Google Scholar 

  17. J. Stejskal, M. Trchová, J. Brodinová, P. Kalenda, S.V. Fedorova, J. Prokeš, and J. Zemek, Coating of Zinc Ferrite Particles with a Conducting Polymer, Polyaniline, J. Colloid Interface Sci., 2006, 298, p 87–93

    Article  CAS  Google Scholar 

  18. G. Fan, Z. Gu, L. Yang, and Li. Feng, Nanocrystalline Zinc Ferrite Photocatalysts Formed Using the Colloid Mill and Hydrothermal Technique, Chem. Eng. J., 2009, 155, p 534–541

    Article  CAS  Google Scholar 

  19. M. Thosmas and K.C. George, Infrared and Magnetic Study of Nanophase Zinc Ferrite, Indian J. Pure Appl. Phys., 2009, 47, p 81–86

    Google Scholar 

  20. S. Singhal, T. Namgyal, S. Bansal, and K. Chandra, Effect of Zn Substitution on the Magnetic Properties of Cobalt Ferrite Nano Particles Prepared Via Sol-Gel Route, J. Electromagn. Anal. Appl., 2010, 2, p 376–381

    CAS  Google Scholar 

  21. A.H. Elsayed, M.S. Mohy Eldin, A.M. Elsyed, A.H. Abo Elazm, E.M. Younes, and H.A. Motaweh, Synthesis and Properties of Polyaniline/Ferrites Nanocomposites, Int. J. Electrochem. Sci., 2011, 6, p 206–221

    CAS  Google Scholar 

  22. J.S. Jiang, L. Gao, X.L. Yang, and J.K. Guo, Synthesis and Characterization of Nanocrystalline Zinc Ferrite, J. Chin Univ., 1999, 20, p 1–4

    CAS  Google Scholar 

  23. R.K. Sharma, O. Suwalka, N. Lakshmi, and K. Venugopalan, Synthesis of Chromium Substituted Nano Particles of Cobalt Zinc Ferrites by Coprecipitation, Mater. Lett., 2005, 59, p 3402–3405

    Article  CAS  Google Scholar 

  24. E.J. Choi, Y. Ahn, and K. Song, Mössbauer study in zinc ferrite nanoparticles, J. Magn. Magn. Mater., 2006, 301, p 171–174

    Article  CAS  Google Scholar 

  25. V. Šepelák, U. Steinike, D.Chr. Uecker, S. Wißmann, and K.D. Becker, Structural Disorder in Mechanosynthesized Zinc Ferrite, J. Solid State Chem., 1998, 135, p 52–58

    Article  Google Scholar 

  26. H. Ehrhardta, S.J. Campbell, and M. Hofmann, Structural Evolution of Ball-Milled ZnFe2O4, J. Alloys Compd., 2002, 339, p 255–260

    Article  Google Scholar 

  27. V. Šepelák, K. Tkáčová, V.V. Boldyrev, S. Wiβmann, and K.D. Becker, Mechanically Induced Cation Redistribution in ZnFe2O4 and Its Thermal Stability, Physica B, 1998, 234–236, p 617–619

    Google Scholar 

  28. M.R. Anantharaman, S. Jagatheesan, K.A. Malini, S. Sindhu, A. Narayanasamy, C.N. Chinnasamy, J.P. Jacobs, S. Reijne, K. Seshan, R.H.H. Smits, and H.H. Brongersma, On the Magnetic Properties of Ultra-fine Zinc Ferrites, J. Magn. Magn. Mater., 1998, 189, p 83–88

    Article  CAS  Google Scholar 

  29. V. Šepelák, S. Wiβmann, and K.D. Becker, Magnetism of Nanostructured Mechanically Activated and Mechanosynthesized Spinel Ferrites, J. Magn. Magn. Mater., 1999, 203, p 135–137

    Article  Google Scholar 

  30. V. Nachbaur, G. Tauvel, T. Verdier, M. Jean, J. Juraszek, and D. Houvet, Mechanosynthesis of Partially Inverted Zinc Ferrite, J. Alloys Compd., 2009, 473, p 303–307

    Article  CAS  Google Scholar 

  31. O.M. Lemine, M. Bououdina, M. Sajieddine, A.M. Al-Saie, M. Shafi, A. Khatab, M. Al-hilali, and M. Henini, Synthesis, Structural, Magnetic and Optical Properties of Nanocrystalline ZnFe2O4, Physica B, 2011, 406, p p1989–p1994

    Article  Google Scholar 

  32. S.J. Stewart, S.J.A. Figueroa, M.B. Sturla, R.B. Scorzelli, F. García, and F.G. Requejo, Magnetic ZnFe2O4 Nanoferrites Studied by X-ray Magnetic Circular Dichroism and Mössbauer Spectroscopy, Physica B, 2007, 389, p 155–158

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank the financial support from National Natural Science Foundation of China (No. 51064002) and Guangxi Natural Science Foundation of China (No. 2012jjAA20053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. H. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, J.H., Li, X.H., Pan, L.P. et al. Investigations on Indium and Zinc Leachabilities from Indium-Bearing Zinc Ferrite Improved by Planetary Ball Milling. J. of Materi Eng and Perform 22, 1311–1318 (2013). https://doi.org/10.1007/s11665-012-0352-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-012-0352-7

Keywords

Navigation