Skip to main content
Log in

Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A critical assessment is carried out of the microstructural changes in respect of the associated reductions in material mechanical properties and of the attendant ballistic-impact failure mechanisms in prototypical friction stir welding (FSW) joints found in armor structures made of high-performance aluminum alloys (including solution-strengthened and age-hardenable aluminum alloy grades). It is argued that due to the large width of FSW joints found in thick aluminum-armor weldments, the overall ballistic performance of the armor is controlled by the ballistic limits of its weld zones (e.g., heat-affected zone, the thermomechanically affected zone, the nugget, etc.). Thus, in order to assess the overall ballistic survivability of an armor weldment, one must predict/identify welding-induced changes in the material microstructure and properties, and the operative failure mechanisms in different regions of the weld. Toward this end, a procedure is proposed in the present study which combines the results of the FSW process modeling, basic physical-metallurgy principles concerning microstructure/property relations, and the fracture mechanics concepts related to the key blast/ballistic-impact failure modes. The utility of this procedure is demonstrated using the case of a solid-solution strengthened and cold-worked aluminum alloy armor FSW-weld test structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Sullivan, C. Derry, J.D. Robson, I. Horsfall, and P.B. Prangnell, Microstructure Simulation and Ballistic Behavior of Weld Zones in Friction Stir Welds in High Strength Aluminium 7xxx Plate, Mater. Sci. Eng. A, 2011, 528, p 3409–3422

    Article  Google Scholar 

  2. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, and C.J. Dawes, “Friction Stir Butt Welding,” International Patent Application No. PCT/GB92/02203, 1991

  3. M. Grujicic, B. Pandurangan, K.L. Koudela, and B.A. Cheeseman, A Computational Analysis of the Ballistic Performance of Light-Weight Hybrid-Composite Armors, Appl. Surf. Sci., 2006, 253, p 730–745

    Article  CAS  Google Scholar 

  4. H. Liu, H. Fulii, M. Maeda, and K. Nogi, Tensile Properties and Fracture Locations of Friction-Stir Welded Joints of 6061-T6 Aluminium Alloy, J. Mater. Sci. Lett., 2003, 22, p 1061–1063

    Article  CAS  Google Scholar 

  5. W.B. Lee, C.Y. Lee, W.S. Chang, Y.M. Yeon, and S.B. Jung, Microstructural Investigation of Friction Stir Welded Pure Titanium, Mater. Lett., 2005, 59, p 3315–3318

    Article  CAS  Google Scholar 

  6. W.M. Thomas and E.D. Nicholas, Friction Stir Welding for the Transportation Industries, Mater. Des., 1997, 18, p 269–273

    Article  CAS  Google Scholar 

  7. J.Q. Su, T.W. Nelson, R. Mishra, and M. Mahoney, Microstructural Investigation of Friction Stir Welded 7050-T651 Aluminum, Acta Mater., 2003, 51, p 713–729

    Article  CAS  Google Scholar 

  8. O. Frigaard, Ø. Grong, and O.T. Midling, A Process Model for Friction Stir Welding of Age Hardening Aluminum Alloys, Metall. Mater. Trans. A, 2001, 32, p 1189–1200

    Article  Google Scholar 

  9. M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, R.A. Spurling, and W.H. Bingel, Properties of Friction-Stir-Welded 7075 T651 Aluminum, Metall. Mater. Trans. A, 1998, 29, p 1955–1964

    Article  Google Scholar 

  10. C.G. Rhodes, M.W. Mahoney, W.H. Bingel, R.A. Spurling, and C.C. Bampton, Effect of Friction Stir Welding on Microstructure of 7075 Aluminum, Scr. Mater., 1997, 36, p 69–75

    Article  CAS  Google Scholar 

  11. G. Liu, L.E. Murr, C.S. Niou, J.C. McClure, and F.R. Vega, Microstructural Aspects of the Friction-Stir-Welding of 6061-T6 Aluminum, Scr. Mater., 1997, 37, p 355–361

    Article  CAS  Google Scholar 

  12. M. Grujicic and G. Arakere, Computational Investigation of Hardness Evolution During Friction-Stir Welding of AA5083 and AA2139 Aluminum Alloys, J. Mater. Eng. Perform., 2011, 20(7), p 1097–1108

    Article  CAS  Google Scholar 

  13. J.C. Bassett and S.S. Birley, Proceedings of the 2nd Symposium on Friction Stir Welding, TWI, 2000 (on CD)

  14. K. Sampath, Adv. Mater. Process., 2005, 163, p 27–29

    CAS  Google Scholar 

  15. C. Garcia-Cordovilla, E. Louis, and A. Pamies, Microstructure and Susceptibility to Stress Corrosion Cracking of Al-Zn-Mg Weldments (AA-7017), Mater. Sci. Eng., 1994, 174A, p 173–186

    Google Scholar 

  16. C. Johnson, Amphibian Warfare, Nov–Dec, 1998, p 2–16

  17. K.J. Colligan, P.J. Konkol, J.J. Fisher, and J.R. Pickens, Friction Stir Welding Demonstrated for Combat Vehicle Construction, Weld. J., 2003, 82(3), p 34–40

    Google Scholar 

  18. K.J. Colligan, J.J. Fisher, J.E. Cover, and J.R. Pickens, Adv. Mater. Process., 2002, 160(9), p 39–41

    CAS  Google Scholar 

  19. P.L. Threadgill, A.J. Leonard, H.R. Shercliff, and J.P. Withers, Friction Stir Welding of Aluminum Alloys, Int. Mater. Rev., 2009, 54(2), p 49–93

    Article  CAS  Google Scholar 

  20. M.M.Z. Ahmed, B.P. Wynne, W.M. Rainforth, and P.L. Threadgill, Proceedings of the 7th Symposium on Friction Stir Welding, TWI, Awaji Island, 2008 (on CD)

  21. G.G. Corbett, S.R. Reid, and W. Johnson, Impact Loading of Plates and Shells by Free-Flying Projectiles: A Review, Int. J. Impact Eng., 1996, 18(2), p 141–230

    Article  Google Scholar 

  22. K.S. Kumar, D. Singh, and T. Bhat, Studies on Aluminum Armour Plates Impacted by Deformable and Non-Deformable Projectiles, Mater. Sci. Forum., 2004, 465–466, p 79–84

    Article  Google Scholar 

  23. T. Børvik, O.S. Hopperstad, and K.O. Pedersen, Fracture Mechanisms of Aluminum Alloy AA7075-T651 Under Various Loading Conditions, Int. J. Impact Eng., 2010, 37, p 537–551

    Article  Google Scholar 

  24. T. Børvik, M.J. Forrestal, O.S. Hopperstad, T.L. Warren, and M. Langseth, Perforation of AA5083-H116 Aluminium Plates with Conical-Nose Steel Projectiles—Calculations, Int. J. Impact Eng., 2009, 36, p 426–437

    Article  Google Scholar 

  25. M.R. Edwards and A. Mathewson, The Ballistic Properties of Tool Steel as a Potential Improvised Armor Plate, Int. J. Impact Eng., 1997, 19, p 297–309

    Article  Google Scholar 

  26. T. Børvik, J.R. Leinum, J.K. Solberg, O.S. Hopperstad, and M. Langseth, Observations on Shear Plug Formation in Weldox 460 E Steel Plates Impacted by Blunt-Nosed Projectiles, Int. J. Impact Eng., 2001, 25, p 553–572

    Article  Google Scholar 

  27. M.J. Forrestal, V.K. Luk, and N.S. Brar, Penetration of Aluminum Armor Plates with Conical-Nose Projectiles, Mechanics, 1990, 10, p 97–105

    Google Scholar 

  28. A.J. Piekutowski, M.J. Forrestal, K.L. Poormon, and T.L. Warren, Ogive-Nose Steel Rods at Normal, Int. J. Impact Eng., 1996, 18, p 877–887

    Article  Google Scholar 

  29. T. Børvik, A.H. Clausen, O.S. Hopperstad, and M. Langseth, Perforation of AA5083-H116 Aluminium Plates with Conical-Nose Steel Projectiles—Experimental Study, Int. J. Impact Eng., 2004, 30, p 367–384

    Article  Google Scholar 

  30. A.H. Chausen, T. Børvik, O.S. Hopperstad, and A. Benallal, Flow and Fracture Characteristics of Aluminium Alloy AA5083-H116 as Function of Strain Rate, Temperature and Triaxiality, Mater. Sci. Eng., 2004, A364, p 260–272

    Google Scholar 

  31. A.P. Rybakov, Spall in Non-One-Dimensional Shock Waves, Int. J. Impact Eng., 2000, 24, p 1041–1082

    Article  Google Scholar 

  32. M. Grujicic, B. Pandurangan, C.-F. Yen, and B.A. Cheeseman, Modifications in the AA5083 Johnson-Cook Material Model for Use in Friction Stir Welding Computational Analyses, J. Mater. Eng. Perform., doi:10.1007/s11665-011-0118-7, 2011

  33. M. Grujicic, G. Arakere, B. Pandurangan, J.M. Ochterbeck, C-.F. Yen, B.A. Cheeseman, A.P. Reynolds, and M. A. Sutton, Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys, J. Mater. Eng. Perform., doi:10.1007/s11665-011-0069-z, 2011

  34. M. Grujicic, G. Arakere, A. Hariharan, B. Pandurangan, C-F. Yen, and B.A. Cheeseman, Two-level Weld-Material Homogenization Approach for Efficient Computational Analysis of Welded Structure Blast Survivability, J. Mater. Eng. Perform., doi:10.1007/s11665-011-9876-5, 2010

  35. M. Grujicic, G. Arakere, A. Hariharan, and B. Pandurangan, A Concurrent Product-Development Approach for Friction-Stir Welded Vehicle-Underbody Structures, J. Mater. Eng. Perform., doi:10.1007/s11665-011-9955-7, 2010

  36. M. Grujicic, G. Arakere, B. Pandurangan, and A. Hariharan, Statistical Analysis of High-Cycle Fatigue Behavior of Friction Stir Welded AA5083-H321, J. Mater. Eng. Perform., 2011, 20(6), p 855–864

    Article  CAS  Google Scholar 

  37. M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, B.A. Cheeseman, and C. Fountzoulas, Computational Analysis and Experimental Validation of the Ti-6Al-4V Friction Stir Welding Behavior, J. Eng. Manuf., 2010, 224(8), p 1–16

    Google Scholar 

  38. M. Grujicic, G. Arakere, B. Pandurangan, and A. Hariharan, Development of a Robust and Cost-Effective Friction Stir Welding Process for Use in Advanced Military Vehicle Structures, J. Mater. Eng. Perform., 2011, 20(1), p 11–23

    Article  CAS  Google Scholar 

  39. M. Grujicic, G. Arakere, H.V. Yalavarthy, and T. He, Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding, J. Mater. Eng. Perform., 2010, 19(5), p 672–684

    Article  CAS  Google Scholar 

  40. M. Grujicic, T. He, G. Arakere, H.V. Yalavarthy, C.-F. Yen, and B.A. Cheeseman, Fully-Coupled Thermo-Mechanical Finite-Element Investigation of Material Evolution During Friction-Stir Welding of AA5083, J. Eng. Manuf., 2010, 224(4), p 609–625

    Article  Google Scholar 

  41. ABAQUS Version 6.10EF, User Documentation, Dassault Systems, 2011

  42. C. F. Yen, Army Research Laboratories, Work in Progress, 2012

Download references

Acknowledgments

The material presented in this article is based on the study supported by two Army Research Office sponsored grants (W911NF-11-1-0207 and W911NF-09-1-0513) and two U.S. Army/Clemson University Cooperative Agreements (W911NF-04-2-0024 and W911NF-06-2-0042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Grujicic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grujicic, M., Pandurangan, B., Arakere, A. et al. Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions. J. of Materi Eng and Perform 22, 30–40 (2013). https://doi.org/10.1007/s11665-012-0239-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-012-0239-7

Keywords

Navigation