Skip to main content
Log in

Microstructures and Mechanical Properties of Friction Stir Spot Welded Aluminum Alloy AA2014

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Friction stir spot welding (FSSW) is a relatively recent development, which can provide a superior alternative to resistance spot welding and riveting for fabrication of aluminum sheet metal structures. In the current work, FSSW experiments were conducted in 3-mm thick sheets of aluminum alloy 2014 in T4 and T6 conditions, with and without Alclad layers. The effects of tool geometry and welding process parameters on joint formation were investigated. A good correlation between process parameters, bond width, hook height, joint strength, and fracture mode was observed. The presence of Alclad layers and the base metal temper condition were found to have no major effect on joint formation and joint strength. Friction stir spot welds produced under optimum conditions were found to be superior to riveted joints in lap-shear and cross-tension tests. The prospects of FSSW in aluminum sheet metal fabrication are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. T. Iwashita, Method and Apparatus for Joining. US Patent 6601751 B2, Aug. 2003

  2. R. Sakano, K. Murakami, K. Yamashita, T. Hyoe, M. Fujimoto, M. Inuzuka, Y. Nagao, and H. Kashiki, Development of Spot FSW Robot System for Automobile Body Members, 3rd International Symposium of Friction Stir Welding, Kobe, Japan, TWI, Sept. 27-28, 2001

  3. C. Shilling and J. dos Santos, Method and Device for Joining at Least Two Adjoining Work Pieces by Friction Welding, US Patent Application 2002/0179682

  4. K. Okamoto, F. Hunt, and S. Hirano, Development of Friction Stir Welding Technique and Machine for Aluminum Sheet Metal Assembly—Friction Stir Welding of Aluminum for Automotive Applications, SAE World Congress, 2005-01-1254, April 11-14, 2005

  5. H. Badarinarayan, F. Hunt, and K. Okamoto, Friction Stir Spot welding, Friction Stir Welding and Processing, R.S. Mishra and M.W. Mahoney, Ed., ASM International, Materials Park, 2007, p 235–272

    Google Scholar 

  6. H.J. Liu, H. Fujii, M. Maeda, and K. Nogi, Tensile Properties and Fracture Locations of Friction-Stir-Welded Joints of 2017-T351 Aluminum Alloy, J. Mater. Process. Technol., 2003, 142, p 692–696

    Article  CAS  Google Scholar 

  7. A. Gerlich, P. Su, M. Yamamoto, and T.H. North, Effect of Welding Parameters on the Strain Rate and Microstructure of Friction Stir Spot Welded 2024 Al Alloy, J. Mater. Sci., 2007, 42, p 5589–5601

    Article  CAS  Google Scholar 

  8. H. Badarinarayan, Y. Shi, X. Li, and K. Okamoto, Effect of Tool Geometry on Hook Formation and Static Strength of Friction Stir Spot Welded Aluminum 5754-O Sheets, Int. J. Mach. Tools Manuf., 2009, 49, p 814–823

    Article  Google Scholar 

  9. T.A. Freeney, S.R. Sharma, and R.S. Mishra, Effects of Welding Parameters on Properties of 5052 Al Friction Stir Spot Welds, SAE Special Publication, SP-2034, SAE 2006-01-0969, Warrendale, USA, 2006

  10. S. Lathabai, M.J. Painter, G.M.D. Cantin, and V.K. Tyagi, Friction Spot Joining of an Extruded Al-Mg-Si Alloy, Scr. Mater., 2006, 55, p 899–902

    Article  CAS  Google Scholar 

  11. Y. Uematsu, K. Tokaji, Y. Tozaki, T. Kurita, and S. Murata, Effect of Re-Filling Probe Hole on Tensile Failure and Fatigue Behaviour of Friction Stir Spot Welded Joints in Al-Mg-Si Alloy, Int. J. Fatigue, 2008, 30(10–11), p 1956–1966

    Article  CAS  Google Scholar 

  12. P.C. Lin, J. Pan, and T. Pan, Failure Modes and Fatigue Life Estimations of Spot Friction Welds in Lap-Shear Specimens of Aluminum 6111-T4 Sheets—Part 1: Welds Made by a Concave Tool, Int. J. Fatigue, 2008, 30(1), p 74–89

    Article  Google Scholar 

  13. A. Gerlich, G.A. Cingara, and T.H. North, Stir Zone Microstructure and Strain Rate During Al 7075-T6 Friction Stir Spot Welding, Metall. Mater. Trans. A, 2006, 37A, p 2773–2786

    Article  CAS  Google Scholar 

  14. Y. Tozaki, Y. Uematsu, and K. Tokaji, Effect of Processing Parameters on Static Strength of Dissimilar Friction Stir Spot Welds Between Different Aluminium Alloys, Fatigue Fract. Eng. Mater. Struct., 2007, 30(2), p 143–148

    Article  CAS  Google Scholar 

  15. V.X. Tran, J. Pan, and T. Pan, Effects of Processing Time on Strengths and Failure Modes of Dissimilar Spot Friction Welds Between Aluminum 5754-O and 7075-T6 Sheets, J. Mater. Process. Technol., 2009, 209(8), p 3724–3739

    Article  CAS  Google Scholar 

  16. P. Su, A. Gerlich, T.H. North, and G.J. Bendzsak, Energy Utilisation and Generation During Friction Stir Spot Welding, Sci. Technol. Weld. Joining, 2006, 11(2), p 163–169

    Article  Google Scholar 

  17. A. Gerlich, P. Su, and T.H. North, Peak Temperatures and Microstructures in Aluminum and Magnesium Alloy Friction Stir Spot Welds, Sci. Technol. Weld. Joining, 2005, 10(6), p 647–652

    Article  CAS  Google Scholar 

  18. P. Su, A. Gerlich, T.H. North, and G.J. Bendzsak, Material Flow During Friction Stir Spot Welding, Sci. Technol. Weld. Joining, 2005, 11(1), p 61–71

    Article  Google Scholar 

  19. M. Awang, V.H. Mucino, Z. Feng, and S.A. David, Thermo-Mechanical Modeling of Friction Stir Spot Welding (FSSW) Process: Use of an Explicit Adaptive Meshing Scheme, SAE World Congress, 2005-01-1251, April 11-14, 2005

  20. Y.H. Yin, N. Sun, T.H. North, and S.S. Hu, Hook Formation and Mechanical Properties in AZ31 Friction Stir Spot Welds, J. Mater. Process. Technol., 2010, 210(14), p 2062–2070

    Article  CAS  Google Scholar 

  21. Y.H. Yin, A. Ikuta, and Y.H. North, Microstructural Features and Mechanical Properties of AM60 and AZ31 Friction Stir Spot Welds, Mater. Des., 2010, 31(10), p 4764–4776

    Article  CAS  Google Scholar 

  22. Z. Feng, M.L. Santella, S.A. David, R.J. Steel, S.M. Packer, T. Pan, M. Kuo, and R.S. Bhatnagar, Friction Stir Spot Welding of Advanced High-Strength Steels—A Feasibility Study, SAE World Congress, 2005-01-1248, April 11-14, 2005

  23. V.X. Tran and J. Pan, Fatigue Behavior of Dissimilar Spot Friction Welds in Lap-Shear and Cross-Tension Specimens of Aluminum and Steel Sheets, Int. J. Fatigue, 2010, 32(7), p 1167–1179

    Article  CAS  Google Scholar 

  24. L. Agarwal, P.K. Mallick, and H.T. Kang, Spot Friction Welding of Mg-Mg, Al-Al and Mg-Al Alloys, SAE Technical Paper No. 2008-01-0144. Warrendale, PA, USA, 2008

  25. Y. Tozaki, Y. Uematsu, and K. Tokaji, Effect of Tool Geometry on Microstructure and Static Strength in Friction Stir Spot Welded Aluminium Alloys, Int. J. Mach. Tools Manuf., 2007, 47(15), p 2230–2236

    Article  Google Scholar 

  26. A.C. Addison and A.J. Robelou, Friction Stir Spot Welding: Principal Parameters and their Effects, 5th International Symposium on Friction Stir Welding, 2004, Metz, France

  27. S. Kou, Welding Metallurgy, 2nd ed., Wiley, Hoboken, NJ, 2003

    Google Scholar 

  28. R. Nandan, T. DebRoy, and H.K.D.H. Bhadeshia, Recent Advances in Friction-Stir Welding – Process, Weldment Structure and Properties, Prog. Mater. Sci., 2008, 53, p 980–1023

    Article  CAS  Google Scholar 

  29. I. Dutta, C.P. Harper, and G. Dutta, Role of Al2O3 Particulate Reinforcements on Precipitation in 2014 Al-Matrix Composites, Metall. Mater. Trans. A, 1994, 25A, p 1591–1602

    Article  CAS  Google Scholar 

  30. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R, 2005, 50, p 1–78

    Article  Google Scholar 

  31. H. Badarinarayan, Q. Yang, and S. Zhu, Effect of Tool Geometry on Static Strength of Friction Stir Spot-Welded Aluminum Alloy, Int. J. Mach. Tools Manuf., 2009, 49, p 142–148

    Article  Google Scholar 

  32. S. Hirasawa, H. Badarinarayan, K. Okamoto, T. Tomimura, and T. Kawanami, Analysis of Effect of Tool Geometry on Plastic Flow During Friction Stir Spot Welding Using Particle Method, J. Mater. Process. Technol., 2010, 210, p 1455–1463

    Article  CAS  Google Scholar 

  33. Q. Yang, S. Mironov, Y.S. Sato, and K. Okamoto, Material Flow During Friction Stir Spot Welding, Mater. Sci. Eng. A, 2010, 527, p 4389–4398

    Article  Google Scholar 

  34. G. Buffa, J. Hua, R. Shivpuri, and L. Fratini, Design of the Friction Stir Welding Tool Using the Continuum Based FEM Model, Mater. Sci. Eng. A, 2006, 419(1–2), p 381–388

    Google Scholar 

  35. D. Mitlin, V. Radmilovic, T. Pan, J. Chen, Z. Feng, and M.L. Santella, Structure-Properties Relations in Spot Friction Welded (also Known as Friction Stir Spot Welded) 6111 Aluminum, Mater. Sci. Eng. A, 2006, 441(1–2), p 79–96

    Google Scholar 

  36. P.C. Lin, J. Pan, and T. Pan, Failure Modes and Fatigue Life Estimations of Spot Friction Welds in Lap-Shear Specimens of Aluminum 6111-T4 Sheets—Part 2: Welds Made by a Flat Tool, Int. J. Fatigue, 2008, 30, p 90–105

    Article  CAS  Google Scholar 

  37. Y.C. Chen, J.C. Feng, and H.J. Liu, Precipitate Evolution in Friction Stir Welding of 2219-T6 Aluminum Alloys, Mater. Charact., 2009, 60(6), p 476–481

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Indian Space Research Organization (ISRO) for providing financial support for carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Janaki Ram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babu, S., Sankar, V.S., Janaki Ram, G.D. et al. Microstructures and Mechanical Properties of Friction Stir Spot Welded Aluminum Alloy AA2014. J. of Materi Eng and Perform 22, 71–84 (2013). https://doi.org/10.1007/s11665-012-0218-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-012-0218-z

Keywords

Navigation