Skip to main content
Log in

The Effects of Stress State and Cavitation on Deformation Stability During Superplastic Forming

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

The current available models describing superplastic deformation do not account for a number of important characteristics, leading to the current limited predictive capabilities of deformation and failure. In this work, the effects of cavitation and stress state on deformation stability during superplastic forming are investigated using Finite Element simulations. The simulations are performed using constant strain rate forming and using a proposed optimization approach based on a multiscale failure criterion that accounts for stress state, geometrical necking, and microstructural evolution including grain growth and cavitation. The simulations are conducted for the superplastic copper-based alloy Coronze-638 and the superplastic aluminum alloy Al-5083 which are known to develop significant cavitation during deformation. The results clearly show the importance of accounting for microstructural evolution during superplastic forming, especially when the state of stress is biaxial. Furthermore, the results highlight the effectiveness of the proposed optimization technique in reducing the forming time and maintaining the integrity of the formed parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Jovane F. (1968) An Approximate Analysis of the Superplastic Forming of a Thin Circular Diaphragm: Theory and Experiments. Int. J. Mech. Sci. 10(10):403-427

    Article  Google Scholar 

  2. Cornfield G.E., Johnson R.H. (1970) The Forming of Superplastic Sheet Metal. Int. J. Mech. Sci. 12:479-490

    Article  Google Scholar 

  3. Holt D.L. (1970) Analysis of the Bulging of Superplastic Sheet by Lateral Pressure. Int. J. Mech. Sci. 12:491-497

    Article  Google Scholar 

  4. Belk J.A. (1975) A Quantitative Model of the Blow Forming of Spherical Surfaces in Superplastic Sheet Metal. Int. J. Mech. Sci. 17:505-511

    Article  Google Scholar 

  5. Dutta A., Mukherjee A.K. (1992) Superplastic Forming: An Analytical Approach. Mater. Sci. Eng. A157:9-13

    CAS  Google Scholar 

  6. Ding X.D., Zbib H.M., Hamilton C.H., Bayoumi A.E. (1995) On the Optimization of Superplastic Blow-Forming Processes. J. Mater. Eng. Perform. 4(4):474-485

    CAS  Google Scholar 

  7. Carrino L., Guiliano G. (1997) Modeling of superplastic blow forming. Int. J. Mech. Sci. 39(2):193-199

    Article  Google Scholar 

  8. Xing X.L., Wang Z.R. (1997) Finite Element Analysis and Design of Thin Sheet Superplastic Forming. J. Mater. Process. Technol. 68:1-7

    Article  Google Scholar 

  9. Khaleel M.A., Johnson K.I., Hamilton C.H., Smith M.T. (1998) Deformation Modeling of Superplastic AA-5083. Int. J. Plasticity 14(10-11):1113-1154

    Article  Google Scholar 

  10. Huang A., Cardew-Hall M.J., Lowe A. (2000) Sheet Thickness Optimization of for Superplastic forming of Engineering Structures. ASME J. Manuf. Sci. Eng. 122(1):166-173

    Article  Google Scholar 

  11. Kim Y.H., Lee J.M., Hong S.S. (2001) Optimal Design of Superplastic Forming Processes. J. Mater. Process. Technol. 112:166-173

    Article  Google Scholar 

  12. Chung L.C., Cheng J.H. (2001) The Analysis of Instability and Strain Concentration during Superplastic Deformation. Mater. Sci. Eng. A308:153-160

    CAS  Google Scholar 

  13. Pilling J., Ridley N. (1986) Effect of Hydrostatic Pressure on Cavitation in Superplastic Aluminum Alloys. Acta Metall. 34(4):669-679

    Article  CAS  Google Scholar 

  14. Taylor M.B., Zbib H.M., Khaleel M.A. (2002) Damage and Size Effect during Superplastic Deformation. Int. J. Plasticity 18(3):415-442

    Article  CAS  Google Scholar 

  15. Bae D.H., Ghosh A.K. (2002) Cavity Growth in a Superplastic Al–Mg Alloy: II. An Improved Plasticity Based Model. Acta Mater. 50(5):1011-1029

    Article  CAS  Google Scholar 

  16. Chandra N., Khraisheh M.K., Kalu P. (2005) Effect of Stress Sate on the Cavitation Behavior of AL 5083 Superplastic Behavior. Mater. Sci. Forum 475-479:2931-2936

    Article  CAS  Google Scholar 

  17. Pilling J., Ridley N. (1989) Superplasticity in Crystalline solids. The Institute of Metals, London, UK, p 102-157

    Google Scholar 

  18. Caceres C.H., Wilkinson D.S. (1984) Large Strain Behavior of a Superplastic Copper Alloy Deformation. Acta Metall. 32:415-422

    Article  CAS  Google Scholar 

  19. N.V. Thuarmalla and M.K. Khraisheh, Effects of Microstructural Evolution on the Stability of Superplastic Deformation. Proceedings of the Second MIT Conference on Computational Fluid and Solid Mechanics, Vol 1, 2003, p 683–686

  20. H. Iwasaki, K. Higashi, S. Tanimura, T. Komatubara, and S. Hayami, Superplastic Deformation Charactristics of 5083 Aluminum Alloy, Superplasticity in Advanced Materials, S. Hori, M. Tokizane, and N. Furushiro, Eds., The Japan Society for Research on Superplasticity, 1991, p 447–452

  21. H. Iwasaki, S. Hayami, K. Higashi, and S. Tanimura, Instability of Superplastic Aluminum Alloys, Materials Research Society Symposium Proceedings, Vol 196, 1990, p 233–238

  22. Stowell M.J. (1983) Cavity Growth and Failure in Superplastic Alloys. Metal Sci. 17:92-98

    Article  Google Scholar 

  23. Ding X.D., Zbib H.M., Hamilton C.H., Bayoumi A.E. (1997) On the Stability of Biaxial Stretching with Application to the Optimization of Superplastic Blow-Forming,. J. Eng. Mater. Technol. ASME Trans. 119:26-31

    CAS  Google Scholar 

  24. Hart E.W. (1976) Theory of the Tensile Test. Acta Metall. 15:351-355

    Google Scholar 

  25. Nichols F.A. (1980) Plastic Instabilities and Uniaxial Tensile Ductilities. Acta Metall. 28:663-673

    Article  CAS  Google Scholar 

  26. N.V. Thuramalla and M.K. Khraisheh, Multiscale-Based Optimization of Superplastic Forming, Transactions of NAMRI/SME, Vol 32, 2004, p 637–643

  27. Hambli R., Potiron A., Guerin F., Dumon B. (2001) Numerical Pressure Prediction Algorithm of Superplastic Forming Process using 2D and 3D Models. J. Mater. Process. Technol. 112:83-90

    Article  CAS  Google Scholar 

  28. Nazzal M.A., Khraisheh M.K., Darras B. (2004) Finite Element Modeling and Optimization of Superplastic Forming Using Variable Strain Rate Approach. ASM J. Mater. Eng. Perform. 13(6):691-699

    Article  CAS  Google Scholar 

  29. Khraisheh M.K., Zbib H.M. (1999) Optimum Forming Loading Paths for Pb–Sn Superplastic Sheet Materials. ASME J. Eng. Mater. Technol. 121:341-345

    Google Scholar 

Download references

Acknowledgment

The support of the National Science Foundation, CAREER Award # DMI-0238712, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwan K. Khraisheh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazzal, M.A., Khraisheh, M.K. The Effects of Stress State and Cavitation on Deformation Stability During Superplastic Forming. J. of Materi Eng and Perform 16, 200–207 (2007). https://doi.org/10.1007/s11665-007-9032-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-007-9032-4

Keywords

Navigation