Skip to main content
Log in

Performance limitation of short wavelength infrared InGaAs and HgCdTe photodiodes

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The carrier lifetimes in InxGa1−xAs (InGaAs) and Hg1−xCdxTe (HgCdTe) ternary alloys for radiative and Auger recombination are calculated for temperature 300K in the short wavelength range 1.5<λ<3.7 µm. Due to photon recycling, an order of magnitude enhancements in the radiative lifetimes over those obtained from the standard van Roosbroeck and Shockley expression, has been assumed. The possible Auger recombination mechanisms (CHCC, CHLH, and CHSH processes) in direct-gap semiconductors are investigated. In both n-type ternary alloys, the carrier lifetimes are similar, and competition between radiative and CHCC processes take place. In p-type materials, the carrier lifetimes are also comparable, however the most effective channels of Auger mechanism are: CHSH process in InGaAs, and CHLH process in HgCdTe. Next, the performance of heterostructure p-on-n photovoltaic devices are considered. Theoretically predicted RoA values are compared with experimental data reported by other authors. In0.53Ga0.47As photodiodes have shown the device performance within a factor often of theoretical limit. However, the performance of InGaAs photodiodes decreases rapidly at intermediate wavelengths due to mismatch-induced defects. HgCdTe photodiodes maintain high performance close to the ultimate limit over a wider range of wavelengths. In this context technology of HgCdTe is considerably advanced since the same lattice parameter of this alloy is the same over wide composition range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. H. Olsen, Laser Focus World A21 (March 1991).

  2. M.J. Cohen and G.H. Olsen, Laser Focus World 109 (June 1993).

  3. G.H. Olsen and M.J. Cohen, Laser Focus World 269 (June 1996).

  4. K. Vural, Opt. Eng. 26, 201 (1987).

    CAS  Google Scholar 

  5. L.J. Kozlowski, K. Vural, D.Q. Bui, R.B. Bailey, D.E. Cooper and D.M. Stephenson, Proc. SPIE 1946, (SPIE, 1993), p. 148.

  6. L.J. Kozlowski, K. Vural, S.C. Cabelli, C.Y. Chen, D.E. Cooper, G.L. Bostrup, D.M. Stephenson, W.L. McLevige, R.B. Bailey, K. Hodapp, D. Hall and W.E. Kleinhans, Proc. SPIE 2268, (SPIE, 1994), p. 353.

  7. L.O. Bubulac, W.E. Tennant, J.G. Pasko, L.J. Kozlowski, M. Zandian, M.E. Motamedi, R.E. DeWames, J. Bajaj, N. Nayar, W.V. McLevige, N.S. Gluck, R. Melendes, D.E. Cooper, D.D. Edwall, J.M. Arias and R. Hall, J. Electron. Mater. 26, 649 (1997).

    CAS  Google Scholar 

  8. J. Piotrowski, Infrared Photon Detectors. ed. A. Rogalski, (Bellingham: Optical Engineering Press, 1995), p. 391.

    Google Scholar 

  9. J. Piotrowski and W. Gawron, Infrared Phys. Technol. 38, 63 (1997).

    Article  CAS  Google Scholar 

  10. J. Piotrowski and A. Rogalski, Sensors and Actuators A67, 146 (1998).

    CAS  Google Scholar 

  11. R.N. Hall, Proc. IEE B106 (Suppl. 17), 923 (1959).

    Google Scholar 

  12. R.G. Humpreys, Infrared Phys. 23, 171 (1983); Infrared Phys. 26, 337 (1986).

    Article  Google Scholar 

  13. W. Van Roosbroeck and W. Shockley, Phys. Rev. 94, 1558 (1954).

    Article  Google Scholar 

  14. C.H. Grein, H. Ehrenreich, and E. Runge, Proc. SPIE 2999, (SPIE, 1998), p. 11.

  15. T.N. Casselman and P.E. Petersen, Solid State Commun. 33, 615 (1980).

    Article  CAS  Google Scholar 

  16. T.N. Casselman, J. Appl. Phys. 52, 848 (1981).

    Article  CAS  Google Scholar 

  17. P.E. Petersen, Semiconductors and Semimetals, Vol. 18, ed. R.K. Willardson and A.C. Beer, (New York: Academic Press, 1981), p. 121.

    Google Scholar 

  18. B. Gelmont, Z.N. Sokolova and I.N. Yassievich, Fiz. Tekh. Poluprovodn. 16, 592 (1982).

    CAS  Google Scholar 

  19. N. Chand, Properties of Lattice-Matched and Strained Indium Gallium Arsenide, ed. P. Bhattachatya, (London: INSPEC, IEE, 1993), p. 127.

    Google Scholar 

  20. R.K. Ahrenkiel, R. Ellingson, S. Johnston and M. Wanlass, Appl. Phys. Lett. 72, 3470 (1999).

    Article  Google Scholar 

  21. M. Gallant and A. Zemel, Appl. Phys. Lett. 52, 1686 (1988).

    Article  CAS  Google Scholar 

  22. R. Trommer and L. Hoffmann, Electron. Lett. 22, 360 (1986).

    Article  Google Scholar 

  23. Properties of Lattice-Matched and Strained Indium Gallium Arsenide, ed. P. Bhattacharya, (London: INSPEC, IEE, 1993).

    Google Scholar 

  24. Infrared Photon Detectors, ed. A. Rogalski, (Bellingham, SPIE Optical Engineering Press, 1995).

    Google Scholar 

  25. S. Paul, J. B. Roy and P.K. Basu, J. Appl. Phys. 69, 827 (1991).

    Article  CAS  Google Scholar 

  26. C.H. Henry, R.A. Logan, F.R. Merritt and C.G. Bethea, Electron. Lett. 20, 358 (1984).

    Article  CAS  Google Scholar 

  27. W.W. Anderson, Infrared Phys. 20, 363 (1980).

    Article  CAS  Google Scholar 

  28. L.J. Kozlowski, K. Vural, J.M. Arias, W.E. Tennant and R.E. DeWames, Proc. SPIE 3182, (SPIE, 1997), p. 2.

    Article  CAS  Google Scholar 

  29. G.H. Olsen and M.J. Cohen, Proc. SPIE 3379, (SPIE, 1998), p. 300.

    Article  CAS  Google Scholar 

  30. A. Krier and Y. Mao, Infrared Phys. Technol. 38, 397 (1997).

    Article  CAS  Google Scholar 

  31. R.M. Lin, S.F. Tang, S.C. Lee, C.H. Kuan, G.S. Chen, T.P. Sun and J.C. Wu, IEEE Trans. Electron Dev. 44, 209 (1997).

    Article  CAS  Google Scholar 

  32. R.E. DeWames, D.D. Edwall, M. Zanadian, L.O. Bubulac, J.G. Pasko, W.E. Tennant, J.M. Arias, and A. D’Souza, J. Electron. Mater. 27, 722 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogalski, A., Ciupa, R. Performance limitation of short wavelength infrared InGaAs and HgCdTe photodiodes. J. Electron. Mater. 28, 630–636 (1999). https://doi.org/10.1007/s11664-999-0046-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-999-0046-6

Key words

Navigation