Skip to main content
Log in

Effect of constrained growth on defect structures in microgravity grown CdZnTe boules

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In a microgravity environment obtainable in an orbiting space shuttle, it is possible to virtually eliminate gravity related effects such as buoyancy driven convection and hydrostatic forces thus providing an ideal environment for diffusion-controlled, containerless crystal growth processes. Under such conditions, it is possible to investigate the effects of gravity independent growth parameters on crystal growth. Studies of CdZnTe boules grown on space shuttle mission USML-1 revealed that regions of the boules grown with wall contact were associated with a higher defect density than regions grown with partial or no wall contact. Defect densities in certain regions grown without wall contact were as low as 5 × 102/cm2 to 1.2 × 103/cm2. More detailed studies on the effects of wall contact were sought in the USML-2 mission. Two CdZnTe boules (GCRC-1 and GCRC-2) were grown by the seeded Bridgman-Stockbarger method. Boule GCRC-1 was grown under constrained conditions to force full wall contact while boule GCRC-2 had a tapered geometry designed to minimize wall contact. Defect distributions in the boules were investigated by synchrotron white beam x-ray topography. The sample GCRC-1 was characterized by the presence of large inhomogeneous strains, numerous grains and twins, all of which are caused by effects related to wall contact. On the other hand, a part of the boule GCRC-2 that grew free from wall contact revealed minimum surface strains, the absence of twins and a very high structural uniformity. Results clearly verify that ampoule wall contact plays an important role in determining the incidence of crystal imperfections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B.V. Dutt, S. Mahajan, R.J. Roedel, G.P. Schwartz, D.C. Miller and L. Derick, J. Electrochem. Soc. 128, 1573 (1981).

    Article  CAS  Google Scholar 

  2. A.W. Vere, S. Cole and D.J. Williams, J. Electron. Mater. 12, 551 (1983).

    CAS  Google Scholar 

  3. E.Y. Gutmanas and P. Haasen, Phys. Status. Solidi. A 63, 63 (1981).

    Article  Google Scholar 

  4. A.F. Witt, H.C. Gatos, M. Lichtensteiger, M.C. Lavine and C.J. Herman, J. Electrochem. Soc. 122, 276 (1975).

    Article  CAS  Google Scholar 

  5. S. Sen, W.H. Konkel, S.J. Tighe, L.G. Bland, S.R. Sharma and R.E. Taylor, J. Cryst. Growth 86, 111 (1988).

    Article  CAS  Google Scholar 

  6. K.Y. Lay, D. Nichols, S. McDevitt, B.E. Dean and C.J. Johnson, J. Cryst. Growth 86, 118 (1988).

    Article  CAS  Google Scholar 

  7. I. Hahnert, M. Muhlberg, H. Berger and Ch. Genzel, J. Cryst. Growth 142, 310 (1994).

    Article  Google Scholar 

  8. D.T.J. Hurle, Materials Science in Space, ed. B. Feurbacher, H. Hamacher and R.J. Naumann, (Germany: Springer Verlag, 1986), p. 379.

    Google Scholar 

  9. T. Duffar, I. Paret-Harter and P. Dusserre, J. Cryst. Growth 100, 171 (1990).

    Article  CAS  Google Scholar 

  10. R.S. Rai, S. Mahajan, S. McDevitt and C.J. Johnson, J. Vac. Sci. Technol. B 9, 1892 (1991).

    Article  CAS  Google Scholar 

  11. M. Dudley, Mater. Res. Soc. Symp. Proc. 307, (Pittsburgh, PA: Mater. Res. Soc., 1993), p. 213.

    Google Scholar 

  12. M. Dudley, Encyclopedia of Advanced Materials 4, (Pergamon, 1994), p. 2950.

  13. M. Dudley, Encyclopedia of Applied Physics 21, (Wiley-VCH Verlag GmbH, 1997), p. 533.

  14. D.J. Larson Jr., J.I.D. Alexander, D. Gillies, F.M. Carlson, J. Wu and D. Black, NASA Conference Publications 3272, (Huntsville, AL: NASA, 1993), p. 129.

    Google Scholar 

  15. D.J. Larson Jr., NASA Conference Publication 3342, (Huntsville, AL: NASA, 1996), p. 337.

    Google Scholar 

  16. R. Srinivas, G. Hambright, M. Ainsworth, M. Fiske and D. Schaefer, AIAA 94-0334 (1994).

  17. T. Duffar, P. Boiton, P. Dusserre and J. Abadie, J. Cryst. Growth 179, 397 (1997).

    Article  CAS  Google Scholar 

  18. A.F. Witt, H.C. Gatos, M. Lichtensteiger and C.J. Herman, J. Electrochem. Soc. 125, 1832 (1978).

    Article  CAS  Google Scholar 

  19. W. R. Wilcox and L.L. Regel, Intl. J. Microgravity Sci. Technol. VIII (1), 56 (1995).

    Google Scholar 

  20. H. Chung, B. Raghothamachar, J. Wu, M. Dudley, D.J. Larson, Jr. and D.C. Gillies, Mater. Res. Soc. Symp. Proc. 378, (Pittsburgh, PA: Mater. Res. Soc., 1995), p. 41.

    Google Scholar 

  21. H. Chung, B. Raghothamachar, M. Dudley and D.J. Larson, Jr., SPIE 2809, 45 (1996).

    Article  CAS  Google Scholar 

  22. S. Tohno and A. Katsui, J. Cryst. Growth 74, 362 (1986).

    Article  CAS  Google Scholar 

  23. W. Zhou, M. Dudley, J. Wu, C.H. Su, M.P. Volz, D.C. Gillies, F.R. Szofran and S.L. Lehoczky, Mater. Sci. & Eng. B 27, 143 (1994).

    Article  Google Scholar 

  24. D.J. Larson, Jr., R.P. Silberstein, D. DiMarzio, F.C. Carlson, D. Gillies, G. Long, M. Dudley and J. Wu, Semiconductor Sci. & Tech. 8, 911 (1993).

    Article  CAS  Google Scholar 

  25. W. Rosch and F. Carlson, J. Cryst. Growth 109, 75 (1991).

    Article  CAS  Google Scholar 

  26. D.J. Larson, Jr., L.G. Casagrande, D. Di Marzio, A. Levy, F.M. Carlson, T. Lee, D. Black, J. Wu and M. Dudley, SPIE 2228, 11 (1994).

    Article  CAS  Google Scholar 

  27. C. Parfeniuk, F. Weinberg, I.V. Samarasekera, C. Schevzov and L. Li, J. Cryst. Growth 119, 261 (1992).

    Article  CAS  Google Scholar 

  28. S. McDevitt, B.E. Dean, D.G. Ryding, F.J. Scheltens and S. Mahajan, Mater. Lett. 4, 451 (1986).

    Article  CAS  Google Scholar 

  29. D.J. Williams and A.W. Vere, J. Cryst. Growth 83, 341 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raghothamachar, B., Chung, H., Dudley, M. et al. Effect of constrained growth on defect structures in microgravity grown CdZnTe boules. J. Electron. Mater. 27, 556–563 (1998). https://doi.org/10.1007/s11664-998-0015-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-998-0015-5

Keywords

Navigation