Skip to main content
Log in

Enhancement of Sn-Bi-Ag Solder Joints with ENEPIG Surface Finish for Low-Temperature Interconnection

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Low-temperature soldering constitutes a promising solution in interconnect technology with the increasing trend of heat-sensitive materials in integrated circuit packaging. Experimental work was carried out to investigate the effect of electroless Ni/electroless Pd/immersion gold (ENEPIG) layer thicknesses on Sn-Bi-Ag solder joint integrity during extended reflow at peak temperatures as low as 175°C. Optimizations are proposed to obtain reliable solder joints through analysis of interfacial microstructure with the resulting joint integrity under extended reflow time. A thin Ni(P) layer with thin Pd led to diffusion of Cu onto the interface resulting in Ni3Sn4 intermetallic compound (IMC) spalling with the formation of thin interfacial (Ni,Cu)3Sn4 IMCs which enhance the robustness of the solder after extended reflow, while thick Ni(P) with thin Pd resulted in weakened solder joints with reflow time due to thick interfacial Ni3Sn4 IMCs with the entrapped brittle Bi-phase. With a suitable thin Ni(P), the Pd thickness has to be optimized to prevent excessive Ni–P consumption and early Cu outward diffusion to enhance the solder joint during extended reflow. Based on these findings, suitable Ni(P) and Pd thicknesses of ENEPIG are recommended for the formation of robust low-temperature solder joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Mizsei and J. Lappalainen, in 30th Eurosensors Conference (2016), pp. 1070–1073

  2. F. Song and B.E. White Jr., arXiv:1608.03911 [cond-mat.mtrl-sci] (2016)

  3. M.O. Thompson, C. Lew, J.Carlson, and P. Brahms, in 17th IEEE International Symposium on the Applications of Ferroelectrics (2008)

  4. M.T. Ghoneim and M.M. Hussain, Electronics 4, 424 (2015). https://doi.org/10.3390/electronics4030424.

    Article  Google Scholar 

  5. J. Wang, H.S. Liu, L.B. Liu, and Z.P. Jin, J. Electron. Mater. 35, 1842 (2006).

    Article  Google Scholar 

  6. C. Wu, J. Shen, and C. Peng, J. Mater. Sci. Mater. Electron. 23, 14 (2012). https://doi.org/10.1007/s10854-011-0383-0.

    Article  Google Scholar 

  7. K. Suganuma, T. Sakai, K.S. Kim, Y. Takagi, J. Sugimoto, and M. Ueshima, IEEE Trans. Electron. Packag. Manuf. 25, 257 (2002).

    Article  Google Scholar 

  8. D.M. Zhang, G.F. Ding, H. Wang, Z. Jiang, and J.Y. Yao, J. Funct Mater Dev. 12, 211 (2006).

    Google Scholar 

  9. F. Christopher, S. Timo, and K. Michael, J. Mater. Sci. 47, 4036 (2012).

    Article  Google Scholar 

  10. J.H. Lau, in Reliability of RoHS-Compliant 2D and 3D IC Interconnects. Reliability of Low-Temperature Lead-Free (SnBiAg) Solder Joints, Chapter (McGraw-Hill Professional, 2011), AccessEngineering

  11. Q.K. Zhang and Z.F. Zhang, Mater. Sci. Eng. A 528, 2686 (2011).

    Article  Google Scholar 

  12. M.C. Liao, P.S. Huang, Y.H. Lin, C.Y. Huang, M.Y. Tsai, and T.C. Huang, in International Microsystems, Packaging, Assembly and Circuits Technology Conference (2014), pp. 397–400. https://doi.org/10.1109/impact.2014.7048436.

  13. M. Mccormack, H.S. Chen, G.W. Kammlott, et al., Journal of Electron. Mater. 26, 954 (1997). https://doi.org/10.1007/s11664-997-0281-7.

    Article  Google Scholar 

  14. S. Sakuyama, T. Akamatsu, K. Uenishi, and T. Sato, Trans. Jpn. Inst. Electron. Packag. 2, 98 (2009).

    Article  Google Scholar 

  15. S.M. Lee, J.W. Yoon, and S.B. Jung, J. Mater. Sci. Mater. Electron. 26, 1649 (2015). https://doi.org/10.1007/s10854-014-2589-4.

    Article  Google Scholar 

  16. M. Ratzker, A. Pearl, M. Osterman, M. Pecht, and G. Milad, J. Electron. Mater. 43, 3885 (2014).

    Article  Google Scholar 

  17. M.O. Alam, Y.C. Chan, and K.C. Hung, Micro-electron. Reliabi. 42, 1065 (2002).

    Article  Google Scholar 

  18. Lead Free Soldering Guide. AIM, https://pdfs.semanticscholar.org/7fce/45de57f95e1722cb9231e0fa5c92e 926ad4f.pdf

  19. K.N. Chiang, Z.N. Liu, and C.T. Peng, in IEEE Transactions on Components and Packaging Technology, vol. 24, no. 4, (2001), pp. 635–640

  20. S.P. Peng, W.H. Wu, C.E. Ho, and Y.M. Huang, J. Alloy. Compd. 493, 431 (2010).

    Article  Google Scholar 

  21. T. Laurila, V. Vourinen, and J.K. Kivilahti, Mater. Sci. Eng. Rep. 49, 1 (2005).

    Article  Google Scholar 

  22. J.W. Yoon, C.B. Lee, and S.B. Jung, Mater. Trans. 43, 1821 (2002).

    Article  Google Scholar 

  23. C.E. Ho, S.W. Lin, and Y.C. Lin, J. Alloys Compd. 509, 7749 (2011).

    Article  Google Scholar 

  24. H. Roberts and K. Johal, Lead-Free Board Surface Finishes. Lead-Free Soldering, ed. J. Bath (Boston: Springer, 2007)

    Google Scholar 

  25. Y.H. Cheng, G.D. Jenq, W.L. Chih, J.L. Chun, H.W. Yu, C.H. Huei, and H.W. Te, J. Mater. Sci. 48, 2724 (2013).

    Article  Google Scholar 

  26. J.W. Yoon, B.I. Noh, and S.B. Jung, J. Electron. Mater. 40, 1950 (2011). https://doi.org/10.1007/s11664-011-1686-x.

    Article  Google Scholar 

  27. K.P.L. Pun, N.S. Dhaka, C. Cheung, and A.H.S. Chan, J. Microelectron. Reliab. Microelectron. Reliab. 78, 339 (2017).

    Article  Google Scholar 

  28. Automotive Electronics Council (AEC) standard, Component Technical Committee, AEC- Q100-010-Rev-A, July 18, (2003).

  29. S.W. Chen, C.H. Wang, S.K. Lin, and C.N. Chiu, J. Mater. Sci. Mater. Electron. 18, 19 (2007).

    Article  Google Scholar 

  30. J.I. Lee, S.W. Chen, H.Y. Chang, and C.M. Chen, J. Electron. Mater. 32, 117 (2003).

    Article  Google Scholar 

  31. K.P.L. Pun, M.N. Islam, C. Cheung, and A.H.S. Chan, (2017). https://doi.org/10.1007/s10854-017-7086-0

  32. B.J. Lee, N.M. Hwang, and H.M. Lee, Acta Mater. 45, 1867 (1997).

    Article  Google Scholar 

  33. U.R. Kattner and W.J. Boettinger, J. Electron. Mater. 23, 603 (1994).

    Article  Google Scholar 

  34. J.M. Kim, M.H. Jeong, S. Yeo, and Y.B. Kim, J. Electron. Mater. 41, 791 (2012).

    Article  Google Scholar 

  35. S. Ahmed, Y.C. Chan, M.N. Islam, and M.J. Rizvi, J. Alloys Compd. 388, 75 (2005).

    Article  Google Scholar 

  36. J.W. Yoon, S.W. Kim, and S.B. Jung, Mater. Trans. 45, 723 (2004).

    Google Scholar 

  37. Y. Jeon, K. Paik, K.S. Bok, W.S. Choi, and C.L. Cho, in 51st ECTC, (2001), pp. 1326–1332

  38. W.R. Myung, Y. Kim, K.Y. Kim, and S.B. Jung, J. Electron. Mater. 45, 3651 (2016).

    Article  Google Scholar 

  39. W. Dong, Y. Shi, Z. Xia, Y. Lei, and F. Guo, J. Electron. Mater. 37, 982 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelvin P. L. Pun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pun, K.P.L., Islam, M.N., Rotanson, J. et al. Enhancement of Sn-Bi-Ag Solder Joints with ENEPIG Surface Finish for Low-Temperature Interconnection. J. Electron. Mater. 47, 5191–5202 (2018). https://doi.org/10.1007/s11664-018-6385-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6385-4

Keywords

Navigation