Skip to main content

Advertisement

Log in

Impact of Ni Ion-Doping on Structural, Optoelectronic and Redox Properties of CeO2 Nanoparticles

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have investigated the influence of Ni doping on the physicochemical properties of CeO2 synthesized by a co-precipitation process. As-prepared nanoparticles were characterized by x-ray diffraction pattern (XRD), transmission electron microscopy (TEM), energy dispersive x-ray analysis, thermal analysis, Fourier transform infrared spectra, optical absorption and temperature program reduction techniques. The observed results clearly demonstrate the impact of Ni ion concentration on the crystallinity, optoelectronic and reducibility of CeO2 nanoparticles. XRD results show that the particle size was decreased after increasing the Ni ion-doping concentrations. TEM micrographs exhibited high aggregation in high Ni ion-doping concentration causing the smallest grain size of the materials. The band gap energies increased with decreasing particle size because of the higher oxygen-releasing capacity and stronger interaction between nickel and the CeO2 matrix. The 7% mol Ni-doped CeO2 exhibits low-temperature reduction. Because of excellent optoelectronic and redox properties, magnetically active Ni ion-doped CeO2 nanoparticles can be used for electrochemical biosensors and solid oxide fuel cell catalysts can be potentially extended to other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.W. Tarnuzzer, J. Colon, S. Patil, and S. Seal, Nano Lett. 5, 2573 (2005).

    Article  Google Scholar 

  2. S. Patil, S. Seal, Y. Guo, A. Schulte, and J. Norwood, Appl. Phys. Lett. 88, 243110 (2006).

    Article  Google Scholar 

  3. F. Zhang, S.W. Chan, J.E. Spanier, E. Apak, Q. Jin, R.D. Robinson, and I.P. Herman, Appl. Phys. Lett. 80, 127 (2002).

    Article  Google Scholar 

  4. C.G. Levi, J.Y. Yang, B.J. Dalgleish, F.W. Zok, and A.G. Evans, J. Am. Ceram. Soc. 81, 2077 (1998).

    Article  Google Scholar 

  5. S. Tsunekawa, S. Ito, and Y. Kawazoe, Appl. Phys. Lett. 85, 3845 (2004).

    Article  Google Scholar 

  6. S. Patil, S.C. Kuiry, and S. Seal, Proc. R. Soc. Math. Phys. 460, 3569 (2004).

    Article  Google Scholar 

  7. S. Deshpande, S. Patil, S.V.N.T. Kuchibhatla, and S. Seal, Appl. Phys. Lett. 87, 133113 (2005).

    Article  Google Scholar 

  8. X.Y. Zhang, J.J. Wei, H.X. Yang, X.F. Liu, W. Liu, C. Zhang, and Y.Z. Yang, Eur. J. Inorg. Chem. 2013, 4443 (2013).

    Article  Google Scholar 

  9. R.H. Gao, D.S. Zhang, P. Maitarad, L.Y. Shi, T. Rungrotmongkol, H.R. Li, J.P. Zhang, and W.G. Cao, J. Phys. Chem. C 117, 10502 (2013).

    Article  Google Scholar 

  10. J.C. Zhang, J.X. Guo, W. Liu, S.P. Wang, A.R. Xie, X.F. Liu, J. Wang, and Y.Z. Yang, Eur J. Inorg. Chem. 6, 969 (2015).

    Article  Google Scholar 

  11. W.P. Shan, F.D. Liu, H. He, X.Y. Shi, and C.B. Zhang, Chem. Commun. 47, 8046 (2011).

    Article  Google Scholar 

  12. J.Y. Luo, M. Meng, J.S. Yao, X.G. Li, Y.Q. Zha, X. Wang, and T.Y. Zhang, Appl. Catal. B Environ. 87, 92 (2009).

    Article  Google Scholar 

  13. G. Jacobs, L. Williams, U. Graham, G.A. Thomas, D.E. Sparks, and B.H. Davis, Appl. Catal. Gener. 252, 107 (2003).

    Article  Google Scholar 

  14. X.F. Wan, D. Goberman, L.L. Shaw, G.S. Yi, and G.M. Chow, Appl. Phys. Lett. 96, 3371678 (2010).

  15. A. Hornes, G. Munuera, A. Fuerte, M.J. Escudero, L. Daza, and A. Martinez-Arias, J. Power Sources 196, 4218 (2011).

    Article  Google Scholar 

  16. A. Kaushik, P.R. Solanki, A.A. Ansari, S. Ahmad, and B.D. Malhotra, Nanotechnology 20, 055105 (2009).

    Article  Google Scholar 

  17. A.A. Ansari, P.R. Solanki, and B.D. Malhotra, Appl. Phys. Lett. 92, 263901 (2008).

    Article  Google Scholar 

  18. D.S. Zhang, Y.L. Qian, L.Y. Shi, H.L. Mai, R.H. Gao, J.P. Zhang, W.J. Yu, and W.G. Cao, Catal. Commun. 26, 164 (2012).

    Article  Google Scholar 

  19. G. Jacobs, L. Williams, U. Graham, D. Sparks, and B.H. Davis, J. Phys. Chem. B 107, 10398 (2003).

    Article  Google Scholar 

  20. N. Thovhogi, A. Diallo, A. Gurib-Fakim, and M. Maaza, J. Alloy. Compd. 647, 392 (2015).

    Article  Google Scholar 

  21. S. Khamlich, B.D. Ngom, C.K. Kotsedi, K. Bouziane, E. Manikandan, and M. Maaza, Surf. Rev. Lett. 21, 1450001 (2014).

    Article  Google Scholar 

  22. S. Mahammadunnisa, P.M.K. Reddy, N. Lingaiah, and C. Subrahmanyam, Catal. Sci. Technol. 3, 730 (2013).

    Article  Google Scholar 

  23. Q. Fu, W.L. Deng, H. Saltsburg, and M. Flytzani-Stephanopoulos, Appl. Catal. B Environ. 56, 57 (2005).

    Article  Google Scholar 

  24. S.X. Cai, D.S. Zhang, L. Zhang, L. Huang, H.R. Li, R.H. Gao, L.Y. Shi, and J.P. Zhang, Catal. Sci. Technol. 4, 93 (2014).

    Article  Google Scholar 

  25. T.Y. Yu, J. Zeng, B. Lim, and Y.N. Xia, Adv. Mater. 22, 5188 (2010).

    Article  Google Scholar 

  26. M. Balaguer, C. Solis, S. Roitsch, and J.M. Serra, Dalton T 43, 4305 (2014).

    Article  Google Scholar 

  27. L. Liao, H.X. Mai, Q. Yuan, H.B. Lu, J.C. Li, C. Liu, C.H. Yan, Z.X. Shen, and T. Yu, J. Phys. Chem. C 112, 9061 (2008).

    Article  Google Scholar 

  28. S. Banerjee, P.S. Devi, D. Topwal, S. Mandal, and K. Menon, Adv. Funct. Mater. 17, 2847 (2007).

    Article  Google Scholar 

  29. C. Laberty-Robert, J.W. Long, K.A. Pettigrew, R.M. Stroud, and D.R. Rolison, Adv. Mater. 19, 1734 (2007).

    Article  Google Scholar 

  30. H.J. Lang, K. Kunstler, and G. Tomandl, Solid State Ionics 157, 189 (2003).

    Article  Google Scholar 

  31. Z.P. Qu, F.L. Yu, X.D. Zhang, Y. Wang, and J.S. Gao, Chem. Eng. J. 229, 522 (2013).

    Article  Google Scholar 

  32. M. Li, Z.G. Liu, Y.H. Hu, Z.X. Shi, and H.Q. Li, Colloid Surface A 301, 153 (2007).

    Article  Google Scholar 

  33. D. Channei, B. Inceesungvorn, N. Wetchakun, S. Ukritnukun, A. Nattestad, J. Chen, and S. Phanichphant, Sci. Rep. Uk 4, 5757 (2014).

  34. V.S. Marques, L.S. Cavalcante, J.C. Sczancoski, A.F.P. Alcantara, M.O. Orlandi, E. Moraes, E. Longo, J.A. Varela, M.S. Li, and M.R.M.C. Santos, Cryst. Growth Des. 10, 4752 (2010).

    Article  Google Scholar 

  35. A.A. Ansari, S.P. Singh, and B.D. Malhotra, J. Alloy. Compd. 509, 262 (2011).

    Article  Google Scholar 

  36. A.A. Ansari, A. Kaushik, P.R. Solanki, and B.D. Malhotra, Electrochem. Commun. 10, 1246 (2008).

    Article  Google Scholar 

  37. A.A. Ansari, P.R. Solanki, and B.D. Malhotra, Sensor Lett. 7, 64 (2009).

    Article  Google Scholar 

  38. A.A. Ansari, S.P. Singh, N. Singh, and B.D. Malhotra, Spectrochim Acta A 86, 432 (2012).

    Article  Google Scholar 

  39. A. Thurber, K.M. Reddy, V. Shutthanandan, M.H. Engelhard, C. Wang, J. Hays, and A. Punnoose, Phys. Rev. B 76, 165435 (2007).

    Article  Google Scholar 

  40. T. Masui, K. Fujiwara, K. Machida, G. Adachi, T. Sakata, and H. Mori, Chem. Mater. 9, 2197 (1997).

    Article  Google Scholar 

  41. B. Tatar, E.D. Sam, K. Kutlu, and M. Urgen, J. Mater. Sci. 43, 5102 (2008).

    Article  Google Scholar 

  42. P. Patsalas, S. Logothetidis, L. Sygellou, and S. Kennou, Phys. Rev. B 68, 035104 (2003).

    Article  Google Scholar 

  43. C.N. Xian, S.F. Wang, C.W. Sun, H. Li, S.W. Chan, and L.Q. Chen, Chin. J. Catal. 34, 305 (2013).

    Article  Google Scholar 

  44. P. Maitarad, J. Han, D.S. Zhang, L.Y. Shi, S. Namuangruk, and T. Rungrotmongkol, J. Phys. Chem. C 118, 9612 (2014).

    Article  Google Scholar 

  45. L. Meng, A.P. Jia, J.Q. Lu, L.F. Luo, W.X. Huang, and M.F. Luo, J. Phys. Chem. C 115, 19789 (2011).

    Article  Google Scholar 

  46. B.M. Reddy, L. Katta, and G. Thrimurthulu, Chem. Mater. 22, 467 (2010).

    Article  Google Scholar 

  47. H.Q. Zhu, Z.F. Qin, W.J. Shan, W.J. Shen, and J.G. Wang, J. Catal. 225, 267 (2004).

    Article  Google Scholar 

  48. H.C. Yao and Y.F.Y. Yao, J. Catal. 86, 254 (1984).

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful for financial support to King Saud University Deanship of Scientific Research, College of Sciences, Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anees A. Ansari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, N., Ansari, A.A., Labis, J.P. et al. Impact of Ni Ion-Doping on Structural, Optoelectronic and Redox Properties of CeO2 Nanoparticles. J. Electron. Mater. 47, 2557–2564 (2018). https://doi.org/10.1007/s11664-018-6088-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6088-x

Keywords

Navigation