Skip to main content
Log in

Effect of Postannealing Treatment on Structural and Optical Properties of ZnO Nanorods Prepared Using Chemical Bath Deposition

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

ZnO nanorods have been synthesized on glass substrate by the chemical bath deposition technique. To investigate the effect of postannealing treatment on their crystalline and optical quality, the films were annealed at various temperatures of 300°C, 400°C, and 500°C in air ambient for 1 h. The morphological and chemical composition of the ZnO films were investigated using field-emission scanning electron microscopy (FESEM) with energy-dispersive spectroscopy (EDS). The structural properties were characterized by employing x-ray diffraction analysis and Raman spectroscopy. Finally, the optical properties were investigated by photoluminescence measurements. FESEM images revealed high-quality ZnO nanorods grown on the substrate surface. EDS results demonstrated a slight reduction in the quantity of oxygen after annealing. XRD and Raman results showed noticeable improvement in the crystalline quality of the ZnO films after annealing. The crystallite size increased significantly after annealing, from 40.5 nm for the nonannealed film to a maximum for 46.2 nm for the annealed samples. The photoluminescence results exhibited an increment in the optical quality [ultraviolet (UV) versus visible emission] after postannealing treatment. The enhancement in the crystalline and optical quality of the annealed films compared with the nonannealed sample is due to recrystallization of ZnO particles into a ZnO wurtzite lattice structure as well as relaxation of oxygen molecules adsorbed on the surface of the ZnO nanorods. This enhancement is conducive to improved efficiency for potential applications of ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Hassan, M. Hashim, and Y. Al-Douri, Opt.-Int. J. Light Electron Opt. 125, 2560 (2014).

    Article  Google Scholar 

  2. F. Jiménez-García, C. Londoño-Calderón, D. Espinosa-Arbeláez, A. Del Real, and M. Rodríguez-García, Bull. Mater. Sci. 37, 1283 (2014).

    Article  Google Scholar 

  3. S. Xu and Z.L. Wang, Nano Res. 4, 1013 (2011).

    Article  Google Scholar 

  4. J. Hassan, Z. Hassan, and H. Abu-Hassan, J. Alloys Compd. 509, 6711 (2011).

    Article  Google Scholar 

  5. L. Vayssieres, Adv. Mater. 15, 464–466 (2003).

    Article  Google Scholar 

  6. H. Deng, J. Russell, R. Lamb, B. Jiang, Y. Li, and X. Zhou, Thin Solid Films 458, 43 (2004).

    Article  Google Scholar 

  7. A. Samavati, H. Nur, A.F. Ismail, and Z. Othaman, J. Alloys Compd. 671, 170 (2016).

    Article  Google Scholar 

  8. M. Boukadhaba, A. Fouzri, V. Sallet, S. Hassani, G. Amiri, A. Lusson, and M. Oumezzine, Superlattices Microstruct. 85, 820 (2015).

    Article  Google Scholar 

  9. Y. Kumar, A.K. Rana, P. Bhojane, M. Pusty, V. Bagwe, S. Sen, and P.M. Shirage, Mater. Res. Express 2, 105017 (2015).

    Article  Google Scholar 

  10. S.A. Bidier, M. Hashim, A.M. AL-Diabat, and M. Bououdina, Phys. E: Low-Dimens. Sys. Nanostruct 88, 169 (2017).

    Article  Google Scholar 

  11. S.J. Chua, K.P. Loh, and E. Fitzgerald, J. Cryst. Growth 287, 157 (2006).

    Article  Google Scholar 

  12. K. Vanheusden, C. Seager, W.T. Warren, D. Tallant, and J. Voigt, Appl. Phys. Lett. 68, 403 (1996).

    Article  Google Scholar 

  13. B. Lin, Z. Fu, and Y. Jia, Appl. Phys. Lett. 79, 943 (2001).

    Article  Google Scholar 

  14. M. Gomi, N. Oohira, K. Ozaki, and M. Koyano, Jpn. J. Appl. Phys. 42, 481 (2003).

    Article  Google Scholar 

  15. A. van Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, J. Phys. Chem. B 104, 1715 (2000).

    Article  Google Scholar 

  16. A. Stoneham, Rep. Prog. Phys. 44, 1251 (1981).

    Article  Google Scholar 

  17. A. Singh, D. Kumar, P. Khanna, M. Kumar, and B. Prasad, J. Mater. Sci. Mater. Electron. 24, 4607 (2013).

    Article  Google Scholar 

  18. M. Asadian, J. Cryst. Process. Technol. 3, 75 (2013).

    Article  Google Scholar 

  19. A. Kyaw, H. Sun, X. Sun, Z. Huang and X. Zeng, presented at the Photo. Global Conf. (PGC), 2010.

  20. L.-L. Yang, Q. Zhao, M. Willander, J. Yang, and I. Ivanov, J. Appl. Phys. 105, 053503 (2009).

    Article  Google Scholar 

  21. C.-W. Liu, S.-J. Chang, C.-H. Hsiao, R.-J. Huang, Y.-S. Lin, M.-C. Su, P.-H. Wang, and K.-Y. Lo, IEEE Photonics Technol. Lett. 26, 789 (2014).

    Article  Google Scholar 

  22. L. Zhang, Y. Ruan, Y. Liu, and Y. Zhai, Cryst. Res. Technol. 48, 996 (2013).

    Article  Google Scholar 

  23. O.F. Farhat, M.M. Halim, M.J. Abdullah, M.K. Ali, and N.K. Allam, Beilstein J. Nanotechnol. 6, 720 (2015).

    Article  Google Scholar 

  24. R. Shabannia, J. Mater. Sci. Mater. Electron. 27, 6413 (2016).

    Article  Google Scholar 

  25. S. Xue, H. Zhuang, C. Xue, L. Hu, B. Li, and S. Zhang, J. Electron. Mater. 36, 502 (2007).

    Article  Google Scholar 

  26. H.S. Kang, J.S. Kang, S.S. Pang, E.S. Shim, and S.Y. Lee, Mater. Sci. Eng. B 102, 313 (2003).

    Article  Google Scholar 

  27. D.-R. Hang, S.E. Islam, K.H. Sharma, S.-W. Kuo, C.-Z. Zhang, and J.-J. Wang, Nanoscale Res. Lett. 9, 1 (2014).

    Article  Google Scholar 

  28. G.N. Narayanan, R.S. Ganesh, and A. Karthigeyan, Thin Solid Films 598, 39 (2016).

    Article  Google Scholar 

  29. G.H. Mhlongo, D.E. Motaung, S.S. Nkosi, H. Swart, G.F. Malgas, K.T. Hillie, and B.W. Mwakikunga, Appl. Surf. Sci. 293, 62 (2014).

    Article  Google Scholar 

  30. B. Panigrahy, M. Aslam, D.S. Misra, M. Ghosh, and D. Bahadur, Adv. Funct. Mater. 20, 1161 (2010).

    Article  Google Scholar 

  31. W.-K. Hong, J.I. Sohn, S.N. Cha, J.M. Kim, and M.E. Welland, Appl. Surf. Sci. 324, 512 (2015).

    Article  Google Scholar 

  32. S. Chen, J. Chen, J. Liu, J. Qi, and Y. Wang, Appl. Surf. Sci. 357, 413 (2015).

    Article  Google Scholar 

  33. B.E. Sernelius, K.-F. Berggren, Z.-C. Jin, I. Hamberg, and C. Granqvist, Phys. Rev. B 37, 10244 (1988).

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support provided by the Institute of Postgraduate Studies (IPS) Universiti Sains Malaysia (USM) Fellowship and Institute of Nano-optoelectronics Research & Technology Laboratory (INOR), sains@usm, under Grant No. 1001/CINOR/811239.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaker A. Bidier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bidier, S.A., Hashim, M.R. & Aldiabat, A.M. Effect of Postannealing Treatment on Structural and Optical Properties of ZnO Nanorods Prepared Using Chemical Bath Deposition. J. Electron. Mater. 46, 4455–4462 (2017). https://doi.org/10.1007/s11664-017-5428-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5428-6

Keywords

Navigation