Skip to main content
Log in

First-Principles Prediction of Electronic, Magnetic, and Optical Properties of Co2MnAs Full-Heusler Half-Metallic Compound

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Electronic, magnetic, and optical properties of Co2MnAs full-Heusler compound have been calculated using a first-principles approach with the full-potential linearized augmented plane-wave (FP-LAPW) method and generalized gradient approximation plus U (GGA + U). The results are compared with various properties of Co2MnZ (Z = Si, Ge, Al, Ga, Sn) full-Heusler compounds. The results of our calculations show that Co2MnAs is a half-metallic ferromagnetic compound with 100% spin polarization at the Fermi level. The total magnetic moment and half-metallic gap of Co2MnAs compound are found to be 6.00μ B and 0.43 eV, respectively. It is also predicted that the spin-wave stiffness constant and Curie temperature of Co2MnAs compound are about 3.99 meV nm2 and 1109 K, respectively. The optical results show that the dominant behavior, at energy below 2 eV, is due to interactions of free electrons in the system. Interband optical transitions have been calculated based on the imaginary part of the dielectric function and analysis of critical points in the second energy derivative of the dielectric function. The results show that there is more than one plasmon energy for Co2MnAs compound, with the highest occurring at 25 eV. Also, the refractive index variations and optical reflectivity for radiation at normal incidence are calculated for Co2MnAs. Because of its high magnetic moment, high Curie temperature, and 100% spin polarization at the Fermi level as well as its optical properties, Co2MnAs is a good candidate for use in spintronic components and magnetooptical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Johnson and R.H. Silsbee, Phys. Rev. Lett. 55, 1790 (1985).

    Article  Google Scholar 

  2. M.N. Baibich, J.M. Broto, A. Fert, F.N. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).

    Article  Google Scholar 

  3. G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).

    Article  Google Scholar 

  4. J. Martin, Mater. Today 8, 362 (2014).

    Google Scholar 

  5. Y. Xu, D.D. Awschalom, and J. Nitta, Handbook of Spintronics (New York: Springer, 2016), p. 335.

    Book  Google Scholar 

  6. R.A. De Groot, F.M. Mueller, P.G. Van Engen, and K.H.J. Buschow, Phys. Rev. Lett. 50, 2024 (1983).

    Article  Google Scholar 

  7. T. Jungwirth, J. Sinova, J. Masek, J. Kucera, and A.H. MacDonald, Rev. Mod. Phys. 78, 809 (2006).

    Article  Google Scholar 

  8. A. Kumar and P.C. Srivastava, J. Electron. Mater. 43, 381 (2014).

    Article  Google Scholar 

  9. K. Bencherif, A. Yakoubi, N. Della, O.M. Abid, H. Khachai, R. Ahmed, R. Khenata, S.B. Omran, S.K. Gupta, and G. Murtaza, J. Electron. Mater. 45, 3479 (2016).

    Article  Google Scholar 

  10. S. Ghosh and P.C. Srivastava, J. Electron. Mater. 43, 4357 (2014).

    Article  Google Scholar 

  11. B. Amin, S. Arif, I. Ahmad, M. Maqbool, R. Ahmad, S. Goumri-Said, and K. Prisbrey, J. Electron. Mater. 40, 1428 (2011).

    Article  Google Scholar 

  12. M. Jourdan, J. Minár, J. Braun, A. Kronenberg, S. Chadov, B. Balke, A. Gloskovskii, M. Kolbe, H. J. Elmers, G. Schönhense, and H. Ebert, Nat. Commun. 5, 4 (2014).

  13. S. Ishida, S. Fujii, S. Kashiwagi, and S. Asano, J. Phys. Soc. Jpn. 64, 2152 (1995).

    Article  Google Scholar 

  14. S. Ishida, T. Masaki, S. Fujii, and S. Asano, Phys. B 245, 1 (1998).

    Article  Google Scholar 

  15. Y. Sakuraba, M. Hattori, M. Oogane, Y. Ando, H. Kato, A. Sakuma, T. Miyazaki, and H. Kubota, Appl. Phys. Lett. 88, 192508 (2006).

    Article  Google Scholar 

  16. Y. Sakuraba, J. Nakata, M. Oogane, Y. Ando, H. Kato, A. Sakuma, T. Miyazaki, and H. Kubota, Appl. Phys. Lett. 88, 022503 (2006).

    Article  Google Scholar 

  17. Y. Sakuraba, T. Miyakoshi, M. Oogane, Y. Ando, A. Sakuma, T. Miyazaki, and H. Kubota, Appl. Phys. Lett. 89, 052508 (2006).

    Article  Google Scholar 

  18. S. Trudel, O. Gaier, J. Hamrle, and B. Hillebrands, J. Phys. D Appl. Phys. 43, 193001 (2010).

    Article  Google Scholar 

  19. B. Balke, S. Ouardi, T. Graf, J. Barth, C.G. Blum, G.H. Fecher, A. Shkabko, A. Weidenkaff, and C. Felser, Solid State Commun. 150, 529 (2010).

    Article  Google Scholar 

  20. A. Candan, G. Uğur, Z. Charifi, H. Baaziz, and M.R. Ellialtıoğlu, J. Alloys Compd. 560, 215 (2013).

    Article  Google Scholar 

  21. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  Google Scholar 

  22. W. Kohn and L.J. Sham, Phys. Rev. A 140, 1133 (1965).

    Article  Google Scholar 

  23. J.C. Slater, Adv. Quantum Chem. 1, 5564 (1964).

    Google Scholar 

  24. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2 K, an Augmented Plane Wave + Local orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Technische Universität, Wien, Austria, 2001).

  25. V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyzyk, and G.A. Sawatzky, Phys. Rev. B 48, 16929 (1993).

    Article  Google Scholar 

  26. H.C. Kandpal, G.H. Fecher, and C. Felser, J. Phys. D Appl. Phys. 40, 1507 (2007).

    Article  Google Scholar 

  27. F.D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944).

    Article  Google Scholar 

  28. P.J. Webster and K.R.A. Ziebeck, in Landolt-Bornstein, New Series, Group III, ed. H.P.J. Wijn (Berlin: Springer, 1988), p. 75.

    Google Scholar 

  29. P.J. Webster, K.R.A. Ziebeck, and K.U. Neumann, in Landolt-Bornstein, New Series, Group III, Vol. 32, ed. H.P.J. Wijn (Berlin: Springer, 2001), p. 64414.

    Google Scholar 

  30. J. Pierre, R.V. Skolozdra, J. Tobola, S. Kaprzyk, C. Hordequin, M.A. Kouacou, I. Karla, R. Currat, and E. Lelievre-Berna, J. Alloys Compd. 262, 101 (1997).

    Article  Google Scholar 

  31. J. Toboła and J. Pierre, J. Alloys Compd. 296, 243 (2000).

    Article  Google Scholar 

  32. E. ŞaŞioğlu, First-Principles Study of the Exchange Interactions and Curie Temperature in Heusler alloys. Ph.D. Doctoral Thesis, Mathematisch–Naturwissenschaftlich–Technischen Fakultät der Martin–Luther–Universität Halle (Wittenberg, 1975), p. 35.

  33. J. Kübler, A.R. William, and C.B. Sommers, Phys. Rev. B 28, 1745 (1983).

    Article  Google Scholar 

  34. R.Y. Umetsu, A. Okubo, A. Fujita, T. Kanomata, K. Ishida, and R. Kainuma, IEEE Trans. Magn. 47, 2451 (2011).

    Article  Google Scholar 

  35. W.Q. Li, J.X. Cao, J.W. Ding, and X.H. Yan, Eur. Phys. J. B 85, 250 (2012).

    Article  Google Scholar 

  36. I. Galanakis and Ph. Mavropoulos, J. Phys.: Condens. Matter 19, 315213 (2007).

    Google Scholar 

  37. P.J. Webster, J. Phys. Chem. Solids 32, 1221 (1971).

    Article  Google Scholar 

  38. H.M. Huang, S.J. Luo, and K.L. Yao, Phys. B 406, 1368 (2011).

    Article  Google Scholar 

  39. S.E. Kulkova, S.V. Eremeev, T. Kakeshita, S.S. Kulkov, and G.E. Rudenski, Mater. Trans. 47, 599 (2006).

    Article  Google Scholar 

  40. P.J. Webster and K.R.A. Ziebeck, J. Phys. Chem. Solids 34, 1647 (1973).

    Article  Google Scholar 

  41. H. Ido and S. Yasuda, Le Journal de Physique Colloques 49, C8-141 (1988).

    Google Scholar 

  42. P.G. Van Engen, K.H.J. Buschow, and M. Erman, J. Magn. Magn. Mater. 30, 374 (1983).

    Article  Google Scholar 

  43. M. Kawakami, Hyperfine Interact. 51, 993 (1989).

    Article  Google Scholar 

  44. M.M. Noskov, Optical and Magneto-optical Properties of Metals (Sverdlovsk: UNTS, 1983), p. 217.

    Google Scholar 

  45. D. Solli, R.Y. Chiao, and J.M. Hickmann, Phys. Rev. E 66, 056601 (2002).

    Article  Google Scholar 

  46. H. Ding-An, Z. Ya-Guang, C. Wei-Cheng, D. Shao-Guang, H. Chun-Qing, Z. Chuan-Yun, and L. Pei-Ying, Commun. Theor. Phys. 55, 671 (2011).

    Article  Google Scholar 

  47. M.M. Sarmazdeh, R.T. Mendi, A. Zelati, A. Boochani, and F. Nofeli, Int. J. Mod. Phys. B 30, 1650117 (2016).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Office of the Vice President for Research at the Department of Physics, Mashhad Branch, Islamic Azad University, Mashhad, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bakhshayeshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhshayeshi, A., Sarmazdeh, M.M., Mendi, .T. et al. First-Principles Prediction of Electronic, Magnetic, and Optical Properties of Co2MnAs Full-Heusler Half-Metallic Compound. J. Electron. Mater. 46, 2196–2204 (2017). https://doi.org/10.1007/s11664-016-5158-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5158-1

Keywords

Navigation